National Taiwan Ocean University Institutional Repository:Item 987654321/8873
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 28603/40634
造访人次 : 4324721      在线人数 : 226
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 进阶搜寻

jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/8873

题名: 不完整模糊偏好關係之研究
Some Issues on Incomplete Fuzzy Preference Relations
作者: 李選士
贡献者: NTOU:Department of Shipping and Transportation Management
國立臺灣海洋大學:航運管理學系
日期: 2008-08
上传时间: 2011-06-28T07:00:26Z
出版者: 行政院國家科學委員會
摘要: 摘要:模糊偏好關係一直是決策者表達方案偏好非常好的工具之一,也引起了研究學者很 多的注意。Z. S. Xu 與Enrique Herrera-Viedma 是這個領域中非常活躍的研究學者。 最近,他們發表了兩篇論文,處理不完整模糊偏好關係,亦即關係中有些元素是未 知的。Xu 試圖運用目標規劃方法直接由不完整模糊偏好關係決定方案之優先權 重。然而,Xu 所提之定義並不健全,用以建立數學規劃模式之偏好關係與優勢向 量對應關係式也不正確。E. Herrera-Viedma 等人試圖依據加法遞移性,由不完整模 糊偏好關係建構一完整模糊偏好關係。他們發展出三項未知元素推估算式,並且提 出一個足以推估出完整模糊偏好關係之充分條件。我們發現尚存在其他推估算式, 以及推估出完整模糊偏好關係之充分且必要條件。此外,Xu 與E. Herrera-Viedma 等人的論文中,只考慮區間尺度。在AHP 中,採用的是比例尺度。如何將相關研 究成果推展至偏好關係值係由比例尺度表示之不完整模糊偏好關係上是一項重要 的議題。在本研究計畫裏,我們將對這些議題加以探討。
Abstract:Fuzzy preference relation has been one of the promising tools for conveying the preference of decision makers in regards to alternatives and drawn a lot of attentions from researchers. Z. S. Xu and Enrique Herrera-Viedma are active researchers in this area. Recently, they have published two papers to deal with incomplete fuzzy preference relations where some entries are unknown. Xu tried to prioritize alternatives directly from the incomplete fuzzy preference relation with goal programming method. However, the definitions he provided are not robust and the equation for establishing the programming model is incorrect. On the other hand, E. Herrera-Viedma et al. tried to construct complete fuzzy preference relation from an incomplete one. E. Herrera-Viedma et al. have developed three equations to estimate unknown entries based on additive transitivity. A sufficient condition for an incomplete fuzzy preference relation to be completed was also given in their paper. We find that there exit other estimation equation and a necessary and sufficient condition for an incomplete fuzzy preference relation to be completed. Furthermore, in the papers of Xu and E. Herrera-Viedma et al. only interval scales are considered. In AHP, ratio scales are assumed. How to extend the results of incomplete fuzzy preference relations consisting of interval scales to the cases where preference values are in terms of ratio scales is an important issue. All these issues are going to be addressed in this project.
關聯: NSC96-2416-H019-004-MY2
URI: http://ntour.ntou.edu.tw/ir/handle/987654321/8873
显示于类别:[航運管理學系] 研究計畫

文件中的档案:

没有与此文件相关的档案.



在NTOUR中所有的数据项都受到原著作权保护.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈