English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28588/40619
Visitors : 4201833      Online Users : 70
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/53171

Title: 船舶振動能擷取之機電材研究
A Study on Electromechanical Materials for Ship Vibration Energy Harvesting
Authors: Hsieh, Meng-Jung
謝孟融
Contributors: 國立臺灣海洋大學:商船學系
Keywords: 機電能轉換;鋯鈦酸鉛 (PZT);晶界阻抗;共振頻率
electro-mechanical energy transformation;lead zirconate titanate (PZT);grain-boundary impedance;resonant frequency
Date: 2019
Issue Date: 2020-07-02T07:45:59Z
Abstract: 優異機電 能轉換特性的鋯鈦酸鉛 能轉換特性的鋯鈦酸鉛 能轉換特性的鋯鈦酸鉛 能轉換特性的鋯鈦酸鉛 能轉換特性的鋯鈦酸鉛 能轉換特性的鋯鈦酸鉛 能轉換特性的鋯鈦酸鉛 能轉換特性的鋯鈦酸鉛 能轉換特性的鋯鈦酸鉛 (PZT)添加晶界相的正溫敏電阻 添加晶界相的正溫敏電阻 添加晶界相的正溫敏電阻 添加晶界相的正溫敏電阻 添加晶界相的正溫敏電阻 添加晶界相的正溫敏電阻 添加晶界相的正溫敏電阻 添加晶界相的正溫敏電阻 添加晶界相的正溫敏電阻 (PTCR)與鐵 電奈米鈦酸鋇 (nano-BT)粒子;摻雜 粒子;摻雜 粒子;摻雜 (Sr,Y)與 Ba取代 ABO3之 PZT的 A位置,有 位置,有 位置,有 效降低晶界阻抗增進機電轉換性能。 效降低晶界阻抗增進機電轉換性能。 PZT+PTCR添加 PbO補償氣氛,在 補償氣氛,在 補償氣氛,在 1250C/2hC/2h C/2h燒結可得到純鈣鈦礦相, PTCR添加可降低 PZT之電阻。 添加 1 wt%與 3 wt% PTCR增加 PZT介電係數、降低容抗, 1 wt%維持共振頻率;添加 3 wt%降低共 振頻率;添加 5 wt% PTCR,介電係數降低、容抗大增加,共振頻率 。 添加 nano-BT之 PZT緻密性與晶粒大小變化不,為沿斷裂特。 緻密性與晶粒大小變化不,為沿斷裂特。 緻密性與晶粒大小變化不,為沿斷裂特。 緻密性與晶粒大小變化不,為沿斷裂特。 Nano-BT顆粒散佈在晶界區域, Pb與 Ba成份較靠近晶界分佈 使 PZT-nano BT具類核 -殼 的晶粒 -晶界關係。 晶界關係。 添加少量奈米級 BT,就有降低阻抗的作用; ,就有降低阻抗的作用; ,就有降低阻抗的作用; 溫度高於 250C, 1 wt% nano-BT使 PZT晶界電阻下降幅度大於 2 wt%添加者。 PZT-BT在相變溫 度 180C以下 仍是鐵電相 ,具有相當的自發偶極量,其複阻 抗之電容性高於具有相當的自發偶極量,其複阻 抗之電容性高於具有相當的自發偶極量,其複阻 抗之電容性高於具有相當的自發偶極量,其複阻 抗之電容性高於性。電容 性。電容 性。電容 (Cp)隨頻率變化,在 隨頻率變化,在 隨頻率變化,在 1 MHz以下產生四組共振利機電能轉換之選擇, 以下產生四組共振利機電能轉換之選擇, 180C以上,共振 -反共振因產生去極化而消失; 反共振因產生去極化而消失; 因船舶主機 外部溫度沒超過 100C,故機電能轉換材 可應用在船舶 具高溫之機艙 振動能擷取 。 添加 (Sr,Y)在 1 mol%以內,影響 以內,影響 以內,影響 以內,影響 PZT結晶度 ,沒第二相 ,沒第二相 析出 ,晶 粒呈現穿,晶 粒呈現穿斷裂 。經 1250C/2h燒結 的 PZT-(Sr,Y)具良好 tetragonal晶相; (Sr,Y)添加 與延長 煆燒時間會造成 PZT晶粒成長。添加 晶粒成長。添加 晶粒成長。添加 (Sr,Y)降低 PZT的殘留極化 (PR)與飽和極化 量(Psat),矯頑電場 (Ec)則維持不變。過量的 Sr (40 mol%),產生第二相,縱使提 高煆燒溫度與延長時間,都大降低 PR與 Psat。PZT-(Sr,Y)的介電係數 的介電係數 (K)雖低於純 PZT,100 kHz以下也有 2600之數值 ;總體阻抗 (|Z|)高於純 PZT;隨著 ;隨著 (Sr,Y)添加 可調整不同的共振頻率,配合船舶 可調整不同的共振頻率,配合船舶 各部位場所產生的振 動頻率擷取各部位場所產生的振 動頻率擷取各部位場所產生的振 動頻率擷取動能。 動能。 450C的 AC阻抗分析, 阻抗分析, (Sr,Y)降低 PZT晶界阻抗值,相同 晶界阻抗值,相同 晶界阻抗值,相同 (Sr,Y)添加量與 煆燒溫度,提升時間可增加 煆燒溫度,提升時間可增加 煆燒溫度,提升時間可增加 PZT的壓電係數 (d33)值,即提升機電轉換效能。 值,即提升機電轉換效能。 值,即提升機電轉換效能。 PZT-Sr0.5Y0.125經 900C/30minC/30min C/30minC/30min煆燒 再 1250C/2h燒結 可得高的 d33值 470 pC/N。 添加少量 (Sr,Y),小於 1 mol%,形成摻雜進入 ,形成摻雜進入 PZT晶格, 無二次相析出過量 添加 (40 mol% Sr),於晶界析出 非低阻值晶 相, 無助於機電轉換效能的提升。 去酯後的 PZT粉體較造粒有分散性顆, 粉體較造粒有分散性顆, 1250C/2hC/2h C/2h有 PbO氣氛補償 下燒結,添加離子性 下燒結,添加離子性 下燒結,添加離子性 Ba可進入 可進入 A位置。 位置。 1~3 mol%的 Ba有效降低晶界阻抗, 有效降低晶界阻抗, 5~7 mol%的 Ba則增加 PZT晶界阻抗。 Ba含量增加, 含量增加, 降低 PZT的 PR與 Psat,但 Ec維持不變。 PZT-Ba的介電係數 (K)高於純 PZT,升高共振頻率,降低 共振 -反共 振大小 。在 200 kHz,PZT-Ba保持穩定 K值 6000以上。 以上。 PZT-Ba的總體阻抗 (|Z|)低於純 PZT,Ba取代性的 添加 有效降低 有效降低 PZT之總體 阻抗 與晶界阻抗 。
The promotion of electro-mechanical transformation performance for lead zirconate titanate (PZT) is using the addition of positive temperature coefficient resistor (PTCR) and ferroelectric nano-barium titanate (nano-BT) particles as the grain-boundary phase, also doping (Sr,Y) and Ba ions to substitute the A-site in ABO3 structure in this study. Such a promotion depends on grain-boundary impedance decrease effectively to enhance the electro-mechanical transformation performance. PZT+PTCR sintered at 1250C/2h with the PbO atmosphere compensation achieves the pure ABO3 perovskite structure to reduce the impedance of PZT. Addition of 1 wt% and 3 wt% PTCR increase the dielectric constant and reduce capacitive reactance. However, the addition of 1 wt% PTCR maintains and 3 wt% PTCR decreases the resonant frequency of PZT. The addition of 5 wt% PTCR reduces the dielectric constant and decreases the capacitive reactance significantly, as well as shifts to lower resonant frequency. The densification and grain size of PZT are remained after the addition of nano-BT and the PZT-nano BT exhibits characteristics of intergranular fracture. The nano-BT particles disperse around the grain boundaries. The distribution of Pb and Ba composition around out-layer of grain lets the PZT-nano BT become the type of core-shell structure. The addition of nano-BT also reduces the PZT impedance effectively. The grain-boundary impedance reduction by 1 wt% nano-BT addition is significant than by 2 wt% addition. The PZT-BT characterizes ferroelectric phase below 180C, which possesses a relative quantity of spontaneous polarization to result in the capacitive reactance larger than resistance. The capacitance changes with frequency to have four resonant frequencies and facilitate the selection of optimal electro-mechanical energy transformation below 1 MHz. The resonant anti-resonant phenomenon will disappear above 180C due to the de-polarization. Such electro-mechanical energy transformation materials can be applied to harvest the vibration energy of the main engine, which the surface temperature is not higher than 100C. The dopant (Sr, Y) less than 1 mol% affects PZT crystallinity, no second phase segregation and exhibits transgranular fracture. The PZT-(Sr,Y) has well tetragonal structure after 1250C/2h sintering. The (Sr, Y) doping and calcination time extension result in grain growth of PZT. The (Sr,Y) doping reduces remanent polarization (PR) and saturated polarization (Psat) but maintains the scale of coercive electric field (Ec). High dopant of Sr (40 mol%) generates secondary phase, decreases the values of PR and (Psat) even increasing calcination temperature and time. The PZT-(Sr,Y) has more higher dielectric constant (K) and total impedance (|Z|) than PZT. The (Sr,Y) doping can provide stable K-value of 2600 below 100 kHz and regulate the resonant frequency to fit different vibration frequency in the ship to harvest such mechanical energies. The grain boundary impedance by AC impedance analysis at 450C is reduced by (Sr,Y) doping. Increase the calcination time can obtain high piezoelectric coefficient (d33) value at the same amount of (Sr,Y) dopant and same calcination temperature. That obtained d33 high value of 470 pC/N for PZT-Sr0.5Y0.125 after 900C/30min calcination and sintering means the promotion of the electro-mechanical transformation efficiency. The small amount of (Sr, Y) less than 1 mol% is doped in the PZT lattice without second phase segregation but high Sr (40 mol%) doping will segregate high impedance phase at grain boundary to degrade the electro-mechanical energy transformation. The debindered PZT powders has more dispersive particles than granulated powders. The ionic Ba addition can enter into the A-site of PZT under the PbO atmosphere compensation at 1250C/2h sintering. The 1~3 mol% Ba can reduce grain boundary impedance effectively. The 5~7 mol% Ba increases grain boundary impedance. The more Ba amount is, the smaller PR and Psat of PZT are, but Ec is maintained. PZT-Ba provides higher K value than PZT, increases resonant frequency and reduces resonant anti-resonant values. PZT-Ba keeps stable K-value of 6000 below 200 kHz. The result of total impedance (|Z|) of PZT-Ba is lower than that of PZT. Therefore, the Ba substitution in PZT can reduce the total and grain-boundary impedances.
URI: http://ethesys.lib.ntou.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=G004034A004.id
http://ntour.ntou.edu.tw:8080/ir/handle/987654321/53171
Appears in Collections:[商船學系] 博碩士論文

Files in This Item:

File SizeFormat
index.html0KbHTML0View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback