English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40649
Visitors : 640940      Online Users : 75
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52936

Title: Self-Assembly of Antimicrobial Peptides on Gold Nanodots: Against Multidrug-Resistant Bacteria and Wound Healing Application.
Authors: Yi‐Cheng Huang
Wei‐Yu Chen
Hsiang‐Yu Chang
Jenn‐Kan Lu
Scott G. Harroun
Yu‐Ting Tseng
Yu‐Jia Li
Chih‐Ching Huang
Huan‐Tsung Chang
Contributors: 國立臺灣海洋大學:食品科學系
Keywords: antimicrobial agents
gold nanodots
wound healing
Date: 2015-10
Issue Date: 2020-02-10T08:35:21Z
Publisher: Advanced Functional Materials
Abstract: Abstract: Photoluminescent gold nanodots (Au NDs) are prepared via etching and codeposition of hybridized ligands, an antimicrobial peptide (surfactin; SFT), and 1‐dodecanethiol (DT), on gold nanoparticles (≈3.2 nm). As‐prepared ultrasmall SFT/DT–Au NDs (size ≈2.5 nm) are a highly efficient antimicrobial agent. The photoluminescence properties and stability as well as the antimicrobial activity of SFT/DT–Au NDs are highly dependent on the density of SFT on Au NDs. Relative to SFT, SFT/DT–Au NDs exhibit greater antimicrobial activity, not only to nonmultidrug‐resistant bacteria but also to the multidrug‐resistant bacteria. The minimal inhibitory concentration values of SFT/DT–Au NDs are much lower (>80‐fold) than that of SFT. The antimicrobial activity of SFT/DT–Au NDs is mainly due to the synergistic effect of SFT and DT–Au NDs on the disruption of the bacterial membrane. In vitro cytotoxicity and hemolysis analyses have revealed superior biocompatibility of SFT/DT–Au NDs than that of SFT. Moreover, in vivo methicillin‐resistant S. aureus–infected wound healing studies in rats show faster healing, better epithelialization, and are more efficient in the production of collagen fibers when SFT/DT–Au NDs are used as a dressing material. This study suggests that the SFT/DT–Au NDs are a promising antimicrobial candidate for preclinical applications in treating wounds and skin infections.
Relation: 25(46) pp 7189-7199
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52936
Appears in Collections:[食品科學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback