English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28595/40626
Visitors : 4211879      Online Users : 54
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52706

Title: A Study of Long Attenuation over composite Undulating Breakwaters, Journal of Coastal Research
Authors: Ruey-Syan Shih
Wen-Kai Weng
Contributors: 國立臺灣海洋大學:河海工程學系
Keywords: Composite undulating breakwater
reflection coefficient
transmission coefficient
wave attenuation
long wave
solitary wave
Date: 2014-05
Issue Date: 2019-12-23T06:48:18Z
Publisher: Journal of Coastal Research
Abstract: ABSTRACT: In this study, the wave attenuation of multiple impermeable sinusoidal profile breakwaters is investigated by a physical experiment conducted in a 21-m wave flume with a combination of breakwaters collocated with various widths (w) and heights (D). The breakwaters were arranged in different permutations and combinations (from one to three sets) on the bottom of various undulating slopes. The attenuation effect when waves propagated through the periodic-gradational undulating terrain was explored, and the optimization of various sinusoidal breakwaters was analyzed. This article discusses the properties of wave reflectance (Kr), transmittance (Kt), the energy loss coefficient (KL), and the attenuation of composite terrain, including the optimal combinations of obstacles. The values of Kr, Kt, and KL were diverse because of various breakwater combinations and various wave conditions. The results indicated that the attenuation of long waves was effective and was affected by nonlinearity and dispersion. Wave decomposition occurred when a wave passed through the breakwaters; a high-frequency fluctuation appeared and dissipated the energy of long waves. The transmittance indicated that a composite of rapidly varying combinations was more favorable than a gradually varying section. Increasing the quantity of composite breakwaters also improved the attenuation effect on both the rapidly varying cases and the segmented gradually varying cases. The optimal combination required to eliminate the energy of long waves was also examined and confirmed using a solitary wave test.
Relation: 32(1) pp 78-90
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52706
Appears in Collections:[河海工程學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback