English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27533/39387
Visitors : 2539000      Online Users : 25
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52607

Title: Hydrogen-sensitive sensor with stabilized Pd-mixture forming sensing nanoparticles on an interlayer
Authors: Shih-Wen Lai
Jung-Hui Tsai
Shih-Wei Tan
Wen-Shiung Lour
Chieh Lo
Contributors: 國立臺灣海洋大學電機工程學系
Keywords: GaN
Hydrogen sensor
Nanoparticles
Schottky
Date: 2011-11
Issue Date: 2019-11-29T03:12:32Z
Publisher: Electronics Letters
Abstract: Abstract:Pd-based mixtures comprising silicon dioxide (SiO2) were used as sensing materials in fabrication of GaN-based hydrogen sensors. The mixture as-deposited has a rough surface with many pores. After wet selectively etching to remove SiO2, the mixture turns into Pd nanoparticles with a size of ∼ 30 nm on an interlayer with oxygen, as indicated by SEM, EDX, and SIMS methods. A careful study of the Pd-mixture on a metal-semiconductor-metal type of hydrogen sensor provides significant information on the roles of oxygen and the interlayer. Experimental results reveal that hydrogen atoms trapped inside the mixture as-deposited cannot contribute to changes in barrier height as an applied voltage is not large enough. Improved sensing properties such as hydrogen dissociation rate, diffusion rate, and storage capability were obtained when Pd nanoparticles were formed by selectively etching the mixture. The situation that hydrogen atoms were blocked and disturbed by oxygen will exist no more. Uniform sensing responses of higher than 105 (defined as (JH2-JN2)/JN2, JH2 and JN2 are current densities measured in H2/N2 and N2 ambiences, respectively), voltage shifts of larger than 20 V were obtained at 2.13 ppm H2/N2. In addition, hydrogen transport through grain boundaries of Pd nanoparticles is much faster than diffusion through a Pd-mixture layer. A much shorter response time was obtained from the sensors with the Pd-mixture wet etched. Furthermore, stable and reliable sensing characteristics were also expected.
Relation: 36(23) pp 15446-15454
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52607
Appears in Collections:[電機工程學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML2View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback