National Taiwan Ocean University Institutional Repository:Item 987654321/52572
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 27533/39387
造访人次 : 2538379      在线人数 : 36
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 进阶搜寻

jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52572

题名: Automatic Thin Cap Fibroatheroma Detection Using Fusion of Intravascular Ultrasound and Virtual Histology Images
作者: Zahra Rezaei
Ali Selamat
Arash Taki
Mohd Shafry Mohd Rahim
Mohammed Rafiq Abdul Kadir
Hamido Fujita
Enrique Videma Harera
Ondrej Krejcar
贡献者: 國立臺灣海洋大學:資訊工程學系
日期: 2018-11-15
上传时间: 2019-11-19
摘要: Abstract: Virtual Histology- Intravascular Ultrasound (VH-IVUS) image is an available method for visualizing plaque component to detect thin cap fibroatheroma. Nevertheless, this imaging modality has considerable limitations to extract the plaque component features and identifying the TCFA plaque. The aim of this paper is to improve the identification of TCFA using fusion of IVUS and VH-IVUS images. In order to generate the automatic technique for reducing the human interaction, a new method namely Active Contour based Plaque Border Detection (ACPB) is proposed. In order to perform the pixel wise classification, hybrid of K-means algorithm with Particle Swarm Optimization and Plaque based Minimum Euclidean Distance (KMPSO-PMED) method is presented to classify the plaque region as well. Moreover, to obtain more significant information of imaging modalities, fusion of two different images consisting of VH-IVUS and IVUS is performed. Therefore, geometric features are extracted from the plaque region and combine with IVUS features. Furthermore, different group of plaque features are divided by means of the histopathological studies. SVM classifiers is applied to detect the TCFA and non-TCFA plaques. The proposed method is applied on 566 in-vivo IVUS and their matching VH-IVUS images obtained from 9 patients. The best result of SVM illustrates the accuracy rates of 99.41% for classification of TCFA plaque. The results prove that the highest accuracy is achieved by integrated features of IVUS and VH-IVUS images.
關聯: 1
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52572
显示于类别:[資訊工程學系] 期刊論文

文件中的档案:

档案 描述 大小格式浏览次数
index.html0KbHTML2检视/开启


在NTOUR中所有的数据项都受到原著作权保护.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈