English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27308/39152
Visitors : 2470325      Online Users : 132
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52303

Title: Development of a salinity-secondary flow-approach model to predict mangrove spreading
Authors: Shang-ShuShih
Sheng-ChiYang
Hong-YuanLee
Gwo-WenHwang
Yu-MinHsu
Contributors: 國立臺灣海洋大學:河海工程學系
Keywords: Mangrove
Water salinity
Secondary flow
Reach-scale
Sea level rise
Date: 2011-08
Issue Date: 2019-11-15T01:46:30Z
Publisher: Ecological Engineering
Abstract: Abstract
This paper presents a new salinity-secondary flow-approach (SSA) model for identifying areas likely to be colonized by mangrove species based on two indices: water salinity concentration and river secondary flow intensity, R/W (the ratio of radius of curvature to river width). The mangrove Kandelia obovata is spreading rapidly in the Tanshui River system and therefore resulting in flooding impact to riparian wetlands; however, few studies have examined the dispersal characteristics of this species on the reach scale. According to the literature review and our observation, the salinity is the major factor in determining the spreading capabilities of mangroves. In addition, the effect of secondary flow can also facilitate mangrove invasion through the creation of bare mudflats.

The case study of the Tanshui River system shows that the SSA model can be used for the determination of the habitat requirements and thus the dispersal capabilities of K. obovata. The results of the study show that the optimum conditions for the growth and dispersal of K. obovata exist in waters with mean annual salinity levels that are higher than 5 ppt (parts per thousand). Although K. obovata can survive in brackish wetlands with mean annual salinity levels lower than 5 ppt, its spreading capability is impaired. In tidal freshwater wetlands with mean annual salinity levels that are lower than 0.1 ppt, K. obovata cannot survive. The study also found that the R/W lower than 3 led to large mudflats, which provide an ideal environment for the growth of mangroves, due to the secondary flow.

It shows that the SSA model can identify the potential habitat of mangrove in tidal region, so it might help with not only estuarine wetland management but also mangrove restoration project, especially for the sea level rise effect and its impact on potential mangrove invasion.
Relation: 37(8) pp.1174-1183
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52303
Appears in Collections:[河海工程學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML0View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback