English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2352977      Online Users : 25
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52290

Title: THE TREFFTZ TEST FUNCTIONS METHOD FOR SOLVING THE GENERALIZED INVERSE BOUNDARY VALUE PROBLEMS OF LAPLACE EQUATION
Authors: Chein-Shan Liu
Yung-Wei Chen
Jiang-Ren Chang
Contributors: 國立臺灣海洋大學:系統工程暨造船學系
Keywords: Laplace equation ;
generalized boundary value problems
boundary integral equation method
Trefftz test functions
Date: 2018-10
Issue Date: 2019-06-21T08:36:56Z
Publisher: Journal of Marine Science and Technology
Abstract: Abstract: The issue of data completion is important for the elliptic type partial differential equation. In the inverse Cauchy problem, we need to complete the boundary data by over-specifying Dirichlet and Neumann data on a portion of the boundary. In this paper, we numerically solve the generalized inverse boundary value problems of Laplace equation in a rectangle with one boundary function and two boundary functions missing, which are more difficult than the inverse Cauchy problem. By using the technique of a boundary integral equation method together with a specially designed Trefftz test function, we can complete the boundary data by requiring minimal extra data. Then solving the Laplace equation with the given data and recovered data by the multiple-scale Trefftz method, we can find the numerical solution in the interior nodal points.
Relation: 26(5) pp.638-647
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52290
Appears in Collections:[系統工程暨造船學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML3View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback