English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26987/38787
Visitors : 2292388      Online Users : 58
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52240

Title: Unravelling preferential flow paths and estimating groundwater potential in a fractured metamorphic aquifer in Taiwan by using borehole logs and hybrid DFN/EPM model
Authors: Shih-Meng Hsu
C. C. Ke
Y. T. Lin
C. C. Huang
Y. S. Wang
Contributors: 國立臺灣海洋大學:河海工程學系
Keywords: Preferential flow paths
Fracture transmissivity
Cross-borehole flowmeter test
EPM/DFN model
Groundwater potential
Borehole logs
Date: 2019-03
Issue Date: 2019-06-13T08:26:58Z
Publisher: Environmental Earth Sciences
Abstract: Abstract: This paper presents a practical-oriented approach for the characterization of preferential flow paths and modeling of three-dimensional fracture network in a fractured metamorphic aquifer that can be used to effectively evaluate groundwater potential in support of groundwater resources planning and management. This approach was demonstrated by using a couple of on-site hydrogeological tests and a hybrid numerical model at the Shuangliu well field situated in the Shungliou Forest Recreation Park, Southern Taiwan. The well field experiments have demonstrated that the combined downhole logging technique can successfully identify interconnection of permeable fractures, and have proved that the preferential flow paths is strongly associated with the major fracture orientation. Cross-borehole flowmeter tests have been confirmed as a useful technique to investigate preferential flow paths between boreholes. The modeling software FracMan was applied to develop a 3-D hybrid Discrete Fracture Network/Equivalent Porous Media (DFN/EPM) model with the aid of the above field tests, outcrop data and the identified scaling properties from fracture statistical analysis. Based on few outcrop data, the proposed 3-D hybrid model can appropriately predict the fracture geometry and locations of preferential flow paths for understanding the entire network structure and flow characteristics. However, collecting outcrop data as many as possible would firmly improve the prediction results of preferential flow paths in every study region. Finally, the validated model can be used to determine groundwater storage in a water planning area. Therefore, this study provides insight into effective fractured rock aquifer characterization and modeling to deal with the heterogeneity of fractured rock and improve the accuracy of groundwater storage computation.
Relation: 78(5)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52240
Appears in Collections:[河海工程學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML8View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback