English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40649
Visitors : 616345      Online Users : 70
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52236

Title: On solving nonlinear moving boundary problems with heterogeneity using the collocation meshless method
Authors: Cheng-Yu Ku
Jing-En Xiao
Chih-Yu Liu
Contributors: 國立臺灣海洋大學:河海工程學系
Date: 2019-04
Issue Date: 2019-06-13T07:50:23Z
Publisher: Water
Abstract: Abstract: In this article, a solution to nonlinear moving boundary problems in heterogeneous geological media using the meshless method is proposed. The free surface flow is a moving boundary problem governed by Laplace equation but has nonlinear boundary conditions. We adopt the collocation Trefftz method (CTM) to approximate the solution using Trefftz base functions, satisfying the Laplace equation. An iterative scheme in conjunction with the CTM for finding the phreatic line with over-specified nonlinear moving boundary conditions is developed. To deal with flow in the layered heterogeneous soil, the domain decomposition method is used so that the hydraulic conductivity in each subdomain can be different. The method proposed in this study is verified by several numerical examples. The results indicate the advantages of the collocation meshless method such as high accuracy and that only the surface of the problem domain needs to be discretized. Moreover, it is advantageous for solving nonlinear moving boundary problems with heterogeneity with extreme contrasts in the permeability coefficient.
Relation: 11(4)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52236
Appears in Collections:[河海工程學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback