English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26987/38787
Visitors : 2214256      Online Users : 36
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52164

Title: 高功率脈衝磁控濺鍍與射頻磁控濺鍍混合沉積Zr–Si–N鍍層之機械性質與氧化行為研究
Mechanical properties and oxidation behaviors of Zr-Si-N coatings fabricated through HIPIMS/RFMS cosputtering
Authors: Zheng, Yu-Zhe
鄭宇哲
Contributors: NTOU:Institute of Materials Engineering
國立臺灣海洋大學:材料工程研究所
Keywords: 高功率脈衝磁控濺鍍;機械性質;殘留應力;氧化行為;射頻磁控濺鍍
HIPIMS;mechanical properties;residual stress;oxidation behaviors;RFMS
Date: 2018
Issue Date: 2019-05-23T06:19:36Z
Abstract:   本研究使用高功率脈衝磁控濺鍍系統(HIPIMS)以及射頻磁控濺鍍系統(RFMS)以共鍍的方式製備Zr–Si–N鍍層,並將鍍層沉積於p-type(100) Si晶片、不鏽鋼基板上,透過顯微結構、機械性質及鍍層之抗氧化特性之分析觀察相異的氮氣流率與Si含量對Zr–Si–N鍍層的影響。將混和氣體總流率控制在30 sccm,氮氣流量分別控制在2 – 4 sccm,固定Zr靶輸出功率為300 W,而Si靶輸出功率恆為50 W;另外固定氮氣與氬氣各別流率為2與28 sccm條件下,透過調整Si靶的輸出功率達到改變Zr–Si–N鍍層中Si含量的目的;同時也利用固定靶材輸出功率及混和氣體比例,提升基板偏壓的方式製備Zr–Si–N鍍層,並在4×10-1 Pa工作壓力下及室溫條件下進行製備。再將製備後的Zr–Si–N鍍層於1%O2 – 99%Ar氣氛中在600°C條件下進行退火,觀察其抗氧化性質。實驗後得到,調整氮氣流量,對於Zr–Si–N鍍層系統的成分影響不大,而結構方面,低氮流量(2 – 2.5 sccm)的鍍層表現出面心立方(fcc.)結構,其奈米硬度由27.4下降至20.4 GPa;當氮氣流量高於3 sccm後,Zr–Si–N鍍層的結構開始轉變為奈米晶與結晶的混和相結構,且硬度下降至14.0 GPa左右。而透過調整Si靶功率來控制Si含量的研究中,Si小於10 at%的Zr–Si–N鍍層皆表現出面心立方(fcc.)結構,具有21.5 – 34.4 GPa和楊氏係數為230 – 373 GPa,隨著Si含量的增加,其中Si含量3.2 – 4.5 %具有34 GPa的高硬度值,XRD中可明顯看出繞射峰半高寬增加,表示晶粒有細化趨勢。而改變基板偏壓的製程中,發現隨著偏壓增加,Zr–Si–N鍍層殘留應力增加,Si含量與奈米硬度值則都是降低趨勢,而鍍層加上– 50 V基板偏壓具有較佳的介面附著性,LC2達34.1 N。通過在低氮通量中得到的高Si含量的Zr–Si–N鍍層,於1%O2 – 99%Ar氣氛中在600 °C進行退火而形成的鍍層顯示出優異的抗氧化性。
In this study, a high-power pulsed magnetron sputtering system (HIPIMS) and a radio frequency magnetron sputtering system (RFMS) were used to cosputter Zr–Si–N coatings on P-type (100) Si wafers and 420 stainless steel substrates. The effects of different nitrogen gas flow rates and Si contents on the Zr–Si–N coatings were observed through the analysis of the microstructure, mechanical properties, and the anti-oxidation properties of the coating. The total flow rate of mixed gas was controlled at 30 sccm, the nitrogen flow rate was controlled at 2 – 4 sccm, Zr target power was fixed at 300 W, and Si target power was constant at 50 W; and the flow rates of the fixed nitrogen and argon gas were set separately under the conditions of 2 and 28 sccm. The Si content in the Zr–Si–N coating is changed by adjusting of Si target power. At the same time, also uses the ratio of fixed target power and mixed gas to prepare different substrate biases. The Zr–Si–N coating was prepared at 4×10-1 Pa working pressure and room temperature conditions. Then, the prepared Zr–Si–N coatings were annealed in a 1% O 2 -99% Ar atmosphere at 600°C, and its anti-oxidation properties were observed. After the experiment, the adjustment of the nitrogen flow rate was not significant to the composition of the Zr–Si–N coatings. The structure of the face-centered cubic (fcc.) is present in the coating of low nitrogen flow (2.0 – 2.5 sccm). The nanohardness decreases from 27.4 to 20.4 GPa; When the nitrogen flow is higher than 3 sccm, the structure of the Zr–Si–N coating began to transform into a mixture of nanocrystals and crystals. The hardness dropped to around 14.0 GPa. And through the adjustment of Si target power to control the Si content of the study, Zr–Si–N coatings of less than 10 at% exhibit face-centered cubic (fcc.) structures with 21.5 – 34.3 GPa and Young's modulus of 230 – 373 GPa. With the increase of Si content, including Si content 3.2 – 4.5 % has higher hardness value of 34 GPa. The XRD can clearly see that the diffraction peak FWHM increases, indicating that the grain refinement trend.   In the process of changing the substrate bias, it was found that as the bias voltage increases, the residual stress of the Zr–Si–N coating increases, but both the Si content and the nano-hardness decrease. However, the coating with –50 V substrate bias has better interface adhesion, and LC2 up to 34.1 N. Through the high Si content Zr–Si–N coating obtained in the low nitrogen flux, the coating formed by annealing at 600 °C in an atmosphere of 1% O2 - 99% Ar showed excellent oxidation resistance.
URI: http://ethesys.lib.ntou.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=G0010555014.id
http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52164
Appears in Collections:[材料工程研究所] 博碩士論文

Files in This Item:

File SizeFormat
index.html0KbHTML1View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback