English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2357157      Online Users : 29
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52036

Title: Development of high‐performance shake tables using the hierarchical control strategy and nonlinear control techniques
Authors: T. Y. Yang
Kang Li
Jian Yuan Lin
Yuanjie Li
D. P. Tung
Contributors: 國立臺灣海洋大學:運輸科學系
Keywords: hierarchical control
sliding mode control
nonlinear control
shake table tests
hydraulic actuators
Date: 2014-12
Issue Date: 2019-01-16T07:52:09Z
Publisher: Earthquake Engineering & Structural Dynamics
Abstract: Abstract: Conventional shake tables employ linear controllers such as proportional‐integral‐derivative or loop shaping to regulate the movement. However, it is difficult to tune a linear controller to achieve accurate and robust tracking of different reference signals under payloads. The challenges are mainly due to the nonlinearity in hydraulic actuator dynamics and specimen behavior. Moreover, tracking a high‐frequency reference signal using a linear controller tends to cause actuator saturation and instability. In this paper, a hierarchical control strategy is proposed to develop a high‐performance shake table. A unidirectional shake table is constructed at the University of British Columbia to implement and evaluate the proposed control framework, which consists of a high‐level controller and one or multiple low‐level controller(s). The high‐level controller utilizes the sliding mode control (SMC) technique to provide robustness to compensate for model nonlinearity and uncertainties experienced in experimental tests. The performance of the proposed controller is compared with a state‐of‐the‐art loop‐shaping displacement‐based controller. The experimental results show that the proposed hierarchical shake table control system with SMC can provide superior displacement, velocity and acceleration tracking performance and improved robustness against modeling uncertainty and nonlinearities. Copyright © 2015 John Wiley & Sons, Ltd.
Relation: 44(11) pp.1717-1728
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/52036
Appears in Collections:[運輸科學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback