English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40649
Visitors : 643623      Online Users : 53
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/51977

Title: Soil Lead Immobilization Using Phosphate Rock
Authors: Chi-Wen Lin
Jonny Lian
Hsin-Hsiung Fang
Contributors: 國立臺灣海洋大學:地球科學研究所
Keywords: immobilization
Pb-contaminated soil
phosphate rock
Date: 2005-02
Issue Date: 2019-01-10T03:10:14Z
Publisher: Water, Air, and Soil Pollution
Abstract: Abstract: Phosphate compounds of lead (Pb) are highly insoluble and their formation in contaminated soils would aid immobilization of Pb. The goal of the current research was to evaluate the immobilization of Pb by various treatments of phosphate rock on contaminated agricultural soils typical of Taiwan, and to determine the optimal amount of phosphate rock for use in field application. Samples of contaminated soil, each containing Pb concentrations ranging from 346 to 1873 mg kg−1 were collected from arable land near a ceramic products manufacturing factory. Both batch immobilization experiments and in situ remediation were completed using phosphate rock additives. Results of the batch experiments demonstrate that the phosphate rock was effective in reducing Pb extractable by 0.1 M HCl, with a minimum reduction of 33–97% after 8 days of reaction, for initial Pb concentrations up to 1873 mg kg−1. HCl-extractable Pb did not decrease after an additional 2-day reaction with a greater phosphate rock loading. It was also found that the reaction time had less effect on Pb immobilization than the amount of phosphate rock added. Results from in situ remediation experiments indicate that soil-extractable Pb was reduced by 93% (mean; range 85.2–97.2%), which is comparable with the results of the batch study. Additionally, the soil pH was increased from 6.25 (mean; range 5.96–6.76) to 7.2 (mean; range 6.92–7.53) after remediation. Based upon the HCl-extractable Pb content and the amount of phosphate rock added, various linear log-linear regression curves were obtained. These predictive equations have been used for field application. Our field results demonstrate that phosphate rocks have a potential to cost-effectively treat Pb-contaminated soils in Taiwan.
Relation: 161(1-4) pp.113-123
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/51977
Appears in Collections:[應用地球科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback