English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27228/39071
Visitors : 2410075      Online Users : 69
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/51899

Title: Shallow crustal thermal structures of central Taiwan foothills region
Authors: Shao-Kai Wu
Wu-Cheng Chi
Shih-Meng Hsu
Chien-Chung Ke
Yun-Shuen Wang
Contributors: 國立臺灣海洋大學:河海工程學系
Keywords: Crustal thermal structures
Heat flow
Geothermal gradients
Frictional effects
Date: 2013-08
Issue Date: 2019-01-03T07:57:47Z
Publisher: Terrestrial
Atmospheric and Oceanic Sciences
Abstract: Abstract: Crustal thermal structures are closely related to metamorphism, rock rheology, exhumation processes, hydrocarbon maturation levels, frictional faulting and other processes. Drilling is the most direct way to access the temperature fields in the shallow crust. However, a regional drilling program for geological investigation is usually very expensive. Recently, a large-scale in-situ investigation program in the Western Foothills of Central Taiwan was carried out, providing a rare opportunity to conduct heat flow measurements in this region where there are debates as to whether previous measured heat flows are representative of the thermal state in this region. We successfully collected 28 geothermal gradients from these wells and converted them into heat flows. The new heat flow dataset is consistent with previous heat flows, which shows that the thermal structures of Central Taiwan are different from that of other subduction accretionary prisms. We then combine all the available heat flow information to analyze the frictional parameters of the Chelungpu fault zone that ruptured during the 1999, Chi-Chi, Taiwan, earthquake. The heat flow dataset gave consistent results compared with the frictional parameters derived from another independent study that used cores recovered from the Chelungpu fault zone at depth. This study also shows that it is suitable for using heat-flow data obtained from shallow subsurface to constrain thrusting faulting parameters, similar to what had been done for the strike-slip San Andreas Fault in California. Additional fieldworks are planned to study heat flows in other mountainous regions of Taiwan for more advanced geodynamic modeling efforts.
Relation: 24(4)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/51899
Appears in Collections:[河海工程學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML7View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback