English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2321612      Online Users : 58
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/51856

Title: A Further Investigation of NH4+ Removal Mechanisms by Using Natural and Synthetic Zeolites in Different Concentrations and Temperatures
Authors: Huei-Fen Chen
Yi-Jun Lin
Bo-Hong Chen
Iizuka Yoshiyuki
Sofia Ya-Hsuan Liou
Rong-Tan Huang
Contributors: 國立臺灣海洋大學:材料工程研究所
Date: 2018-11
Issue Date: 2019-01-02T06:15:08Z
Publisher: Journal reference: Minerals
Abstract: Abstract: We investigate the ammonium removal abilities of natural and synthetic zeolites, which have distinct Si/Al ratios and various surface areas, to study how adsorption and ion-exchange processes in zeolites perform under different ammonium concentrations and different temperatures. Five zeolites including natural mordenite, chabazite, erionite, clinoptilolite and synthetic merlinoite were immersed in 20 mg/kg, 50 mg/kg and 100 mg/kg ammonium solutions. The results demonstrate that zeolites under high ammonium concentrations (100 mg/kg) possess higher physical adsorption capacity (0.398–0.468 meq/g), whereas those under lower ammonium concentrations (20 mg/kg) possess greater ion-exchange property (64–99%). The ion-exchange ability of zeolites are extremely dependent on the cation content of the zeolites, and the cation content is affected by the Si/Al ratio. The surface area of zeolites also has a partial influence on its physical adsorption ability. When the surface area is less than 100 m2/g, the adsorption ability of zeolite increases obviously with surface area; however, adsorption ability is saturated as the surface area becomes larger than this critical value of 100 m2/g. When we carried out the zeolites in 50 mg/kg ammonium concentration at different temperatures (5~50 ℃), we found that zeolites exhibit the highest ammonium removal ability at 30°C and the potassium release was enhanced at 30~40 ℃.
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/51856
Appears in Collections:[材料工程研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML17View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback