English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26994/38795
Visitors : 2391657      Online Users : 75
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/51491

Title: Portable Virtual Piano Design
Authors: Y. X. Zhao
C. H. Chou
M. C. Su
Y. Z. Hsieh
Contributors: 國立臺灣海洋大學:電機工程學系
Keywords: virtual piano
optical fiber gloves
Date: 2010-07
Issue Date: 2018-11-30T08:35:36Z
Publisher: World Academy of Science, Engineering and Technology
Abstract: Abstract: The purpose of this study is to design a portable virtual
piano. By utilizing optical fiber gloves and the virtual piano software
designed by this study, the user can play the piano anywhere at any
time. This virtual piano consists of three major parts: finger tapping
identification, hand movement and positioning identification, and
MIDI software sound effect simulation. To play the virtual piano, the
user wears optical fiber gloves and simulates piano key tapping
motions. The finger bending information detected by the optical fiber
gloves can tell when piano key tapping motions are made. Images
captured by a video camera are analyzed, hand locations and moving
directions are positioned, and the corresponding scales are found. The
system integrates finger tapping identification with information about
hand placement in relation to corresponding piano key positions, and
generates MIDI piano sound effects based on this data. This
experiment shows that the proposed method achieves an accuracy rate
of 95% for determining when a piano key is tapped.
Relation: 4(7)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/51491
Appears in Collections:[電機工程學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback