English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40649
Visitors : 616153      Online Users : 72
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/51174

Title: Modular Synthesis of Petri Nets for Modeling Flexible Manufacturing Systems
Authors: Mu Der Jeng
Contributors: 國立臺灣海洋大學電機工程學系
Keywords: Petri nets
Date: 1995-07
Issue Date: 2018-11-15T02:03:18Z
Publisher: International Journal of Flexible Manufacturing Systems
Abstract: Abstract: This paper proposes a modular Petri net synthesis method for modeling flexible manufacturing systems based on synchronization among control processes of the manufacturing resources (such as robots and machines). In the method, the target system is modeled in a bottom-up and uniform manner by first describing the system's control processes using strongly connected state machines (SCSMs) as the basic modules. Each SCSM may contain multiple tokens to represent resources from the same type such as spaces in a buffer. Next, the common transitions and common transition subnets of the modules are merged to represent their synchronization. The system model constructed is proven to be conservative and thus bounded. Moreover, a restricted class of merged nets is proven to be live and reversible. For general classes of merged nets, this paper shows theorems that easily calculateP-invariants of the final net without solving the linear system equations. TheseP-invariants can be used to help in verifying the model's qualitative properties such as liveness.
Relation: 7(3) pp.287-310
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/51174
Appears in Collections:[電機工程學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback