English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40649
Visitors : 616347      Online Users : 70
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/51172

Title: Non-Energy Based Neural Networks for Job-Shop Scheduling
Authors: Mu Der Jeng
Chun Yu Chang
Contributors: 國立臺灣海洋大學電機工程學系
Date: 1997-02
Issue Date: 2018-11-15T01:52:25Z
Publisher: IEE Electronics Letters
Abstract: Abstract: A synchronous neural network architecture that implements a heuristic rule is proposed for solving the job-shop scheduling problem. The proposed rule can obtain better near-optimal solutions than some commonly used heuristic rules. The approach resolves drawbacks in prior work based on energy functions such as invalid solutions, local minima and sensitivity to initial inputs.
Relation: 33(5) pp.399-400
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/51172
Appears in Collections:[電機工程學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML12View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback