National Taiwan Ocean University Institutional Repository:Item 987654321/51159
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28607/40644
Visitors : 5308307      Online Users : 169
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item:

Title: Kinesthesia in a sustained-attention driving task
Authors: CH Chuang
TP Jung
CT Lin
Contributors: 國立臺灣海洋大學:資訊工程學系
Keywords: Driving
Independent component analysis
Time–frequency analysis
Date: 2014-05
Issue Date: 2018-11-14T09:00:59Z
Publisher: NeuroImage
Abstract: Abstract: This study investigated the effects of kinesthetic stimuli on brain activities during a sustained-attention task in an immersive driving simulator. Tonic and phasic brain responses on multiple timescales were analyzed using time-frequency analysis of electroencephalographic (EEG) sources identified by independent component analysis (ICA). Sorting EEG spectra with respect to reaction times (RT) to randomly introduced lane-departure events revealed distinct effects of kinesthetic stimuli on the brain under different performance levels. Experimental results indicated that EEG spectral dynamics highly correlated with performance lapses when driving involved kinesthetic feedback. Furthermore, in the realistic environment involving both visual and kinesthetic feedback, a transitive relationship of power spectra between optimal-, suboptimal-, and poor-performance groups was found predominately across most of the independent components. In contrast to the static environment with visual input only, kinesthetic feedback reduced theta-power augmentation in the central and frontal components when preparing for action and error monitoring, while strengthening alpha suppression in the central component while steering the wheel. In terms of behavior, subjects tended to have a short response time to process unexpected events with the assistance of kinesthesia, yet only when their performance was optimal. Decrease in attentional demand, facilitated by kinesthetic feedback, eventually significantly increased the reaction time in the suboptimal-performance state. Neurophysiological evidence of mutual relationships between behavioral performance and neurocognition in complex task paradigms and experimental environments, presented in this study, might elucidate our understanding of distributed brain dynamics, supporting natural human cognition and complex coordinated, multi-joint naturalistic behavior, and lead to improved understanding of brain-behavior relations in operating environments.
Relation: 91 pp.187-202
Appears in Collections:[Department of Computer Science and Engineering] Periodical Articles

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback