English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27454/39300
Visitors : 2535940      Online Users : 34
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/51135

Title: Flued: A Novel Four-Layer Model for Simulating Epidemic Dynamics and Assessing Intervention Policies
Authors: Chung-Yuan Huang
Tzai-Hung Wen
Yu-Shiuan Tsai
Contributors: 國立臺灣海洋大學:資訊工程學系
Date: 2013-06
Issue Date: 2018-11-14T07:27:24Z
Publisher: Journal of Applied Mathematics
Abstract: Abstract: From the 2003 severe acute respiratory syndrome (SARS) epidemic, to the 2009 swine-origin influenza A (H1N1) pandemic, to the projected highly pathogenic avian influenza A event, emerging infectious diseases highlight the importance of computational epidemiology to assess potential intervention policies. Hence, an important and timely research goal is a general-purpose and extendable simulation model that integrates two major epidemiological factors—age group and population movement—and substantial amounts of demographic, geographic, and epidemiologic data. In this paper, we describe a model that we have named FLUed for Four-layer Universal Epidemic Dynamics that integrates complex daily commuting network data into multiple age-structured compartmental models. FLUed has four contact structures for simulating the epidemic dynamics of emerging infectious diseases, assessing the potential efficacies of various intervention policies, and identifying the potential impacts of spatial-temporal epidemic trends on specific populations. We used data from the seasonal influenza A and 2009 swine-origin influenza A (H1N1) epidemics to validate model reliability and suitability and to assess the potential impacts of intervention policies and variation in initial outbreak areas for novel/seasonal influenza A in Taiwan. We believe that the FLUed model represents an effective tool for public health agencies responsible for initiating early responses to potential pandemics.
Relation: 2013
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/51135
Appears in Collections:[資訊工程學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML10View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback