English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27221/39064
Visitors : 2404761      Online Users : 67
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50772

Title: The reliability study of selected Sn–Zn based lead-free solders on Au/Ni–P/Cu substrate
Authors: R.K.Shiue
L.W.Tsay
C.L.Lin
J.L.Ou
Contributors: 國立臺灣海洋大學:材料工程研究所
Date: 2003-03
Issue Date: 2018-10-23T07:31:27Z
Publisher: Microelectronics Reliability
Abstract: Abstract: Since both Ag and In are important melting point depressants in Sn–Zn based solders, a series Sn–Zn based solders with various amounts of Ag and In additions was studied in the experiment. The melting behavior of solder alloys, wetting characteristics, coefficients of thermal expansion, microstructural evolution and long-term reliability of the selected Sn–Zn based solder on Au/Ni–P metallized copper substrate were examined. Based on the experimental result, there is little change in the melting range of Sn–Zn based solder alloys by minor addition of Ag. On the contrary, the melting point of Sn–Zn based alloys can be effectively decreased by In additions. However, the difference between solidus and liquidus temperature is broadened as the increment of In into Sn–Zn based solders. 76Sn–9Zn–15In has the lowest liquidus temperature among all alloys, and it can effectively bond the Au/Ni–P metallized copper substrate. The microstructure of 76Sn–9Zn–15In alloy soldered at 200 °C for 20 min is primarily comprised of Sn–In γ phase and needle-like ZnO2. Since there is no flux usage during soldering, zinc oxide cannot be avoided even the process performed under 2×10−2 mbar vacuum environment. It is also noted that there is no interfacial reaction layer between 76Sn–9Zn–15In and Au/Ni–P metallized copper substrate after soldering. However, there is a reaction layer between 76Sn–9Zn–15In and substrate as the soldered specimen aged at 90 °C for 168 h. Its chemical composition is close to Zn-rich γ phase (NiZn3) alloyed with minor Sn, In, Cu and P. For the specimen further aged at 90 °C for 336 h, there are cracks along the interface between solder alloy and electroless Ni–P layer. The oxidation of the interfacial Zn-rich γ phase plays an important role in deterioration of the bonding between 76Sn–9Zn–15In and Au/Ni–P metallized copper substrate.
Relation: 43(3) pp.453-463
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50772
Appears in Collections:[材料工程研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML15View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback