English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27308/39152
Visitors : 2447771      Online Users : 42
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50751

Title: The use of laser surface-annealed treatment to retard fatigue crack growth of austenitic stainless steel
Authors: L.W.Tsay
Y.C.Liu
D.-Y.Lin
M.C.Young
Contributors: 國立臺灣海洋大學:材料工程研究所
Keywords: Fatigue crack growth
Residual stresses
AISI 316 stainless steel
Hydrogen embrittlement
Laser surface annealing
Date: 2004-10
Issue Date: 2018-10-22T08:32:32Z
Publisher: Mat. Sci. Engineering
Abstract: Abstract: Fatigue crack growth behavior of an AISI 316 austenitic stainless steel (SS) annealed using a CO2 laser was evaluated under various environments—lab air, gaseous hydrogen and saturated hydrogen sulfide solution. The laser-annealed specimen revealed no change in microstructures in various regions of the specimen. The results of fatigue crack growth tests indicated the laser-annealed specimen had a higher resistance to fatigue crack growth in the region preceding the laser-annealed zone (LAZ) independent of the test environments. Meanwhile, crack growth results also suggested that AISI 316 SS showed a low level of sensitivity to hydrogen-accelerated crack growth. X-ray diffraction pattern of the fatigue-cracked surface revealed that partial austenite to martensite transformation occurred within a narrow depth. The presence of residual austenite in the highly strained region trapped a large amount of hydrogen, which helped reduce hydrogen embrittlement susceptibility and hydrogen-accelerated crack growth in the alloy. Fatigue fractography of the specimens tested in air showed predominantly transgranular fatigue fracture with some flat facets (FFs). In case of specimens tested in the H2S solution or gaseous hydrogen at low loading frequency, quasi-cleavage (QC) fracture was correlated with hydrogen-enhanced crack growth. Moreover, the presence of obvious striations on the fracture surface of embrittled specimens could be attributed to the hydrogen-activated slip processes ahead of the crack front.
Relation: 384(1-2) pp.177-183
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50751
Appears in Collections:[材料工程研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML15View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback