English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2323885      Online Users : 53
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50567

Title: Influence of storm magnitude and watershed size on runoff nonlinearity
Authors: Kwan Tun Lee
Jen-Kuo Huang
Contributors: 國立臺灣海洋大學:河海工程學系
Keywords: Rainfall-runoff process
scaling effect
runoff nonlinearity
kinematic-wave-based geomorphologic instantaneous unit hydrograph
storm magnitude
watershed size
Date: 2016-06
Issue Date: 2018-10-15T08:08:16Z
Publisher: Journal of Earth System Science
Abstract: Abstract: The inherent nonlinear characteristics of the watershed runoff process related to storm magnitude and watershed size are discussed in detail in this study. The first type of nonlinearity is referred to rainfall-runoff dynamic process and the second type is with respect to a Power-law relation between peak discharge and upstream drainage area. The dynamic nonlinearity induced by storm magnitude was first demonstrated by inspecting rainfall-runoff records at three watersheds in Taiwan. Then the derivation of the watershed unit hydrograph (UH) using two linear hydrological models shows that the peak discharge and time to peak discharge that characterize the shape of UH vary event-to-event. Hence, the intention of deriving a unique and universal UH for all rainfall-runoff simulation cases is questionable. In contrast, the UHs by the other two adopted nonlinear hydrological models were responsive to rainfall intensity without relying on linear proportion principle, and are excellent in presenting dynamic nonlinearity. Based on the two-segment regression, the scaling nonlinearity between peak discharge and drainage area was investigated by analyzing the variation of Power-law exponent. The results demonstrate that the scaling nonlinearity is particularly significant for a watershed having larger area and subjecting to a small-size of storm. For three study watersheds, a large tributary that contributes relatively great drainage area or inflow is found to cause a transition break in scaling relationship and convert the scaling relationship from linearity to nonlinearity.
Relation: 125(4) pp.777-794
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50567
Appears in Collections:[河海工程學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML12View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback