English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2317895      Online Users : 41
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50491

Title: Synthesis of Cisplatin(IV) Prodrug-Tethered CuFeS2 Nanoparticles in Tumor-Targeted Chemotherapy and Photothermal Therapy
Authors: W. M. Girma
S.-H. Tzing
P.-J. Tseng
C.-C. Huang
Y.-C. Ling
J.-Y. Chang
Contributors: 國立臺灣海洋大學:生命科學暨生物科技學系
Date: 2018-01
Issue Date: 2018-10-12T05:56:22Z
Publisher: ACS Applied Materials & Interfaces
Abstract: Abstract: In this study, for the first time, CuFeS2 nanocrystals were successfully prepared through a facile noninjection-based synthetic strategy, by reacting Cu and Fe precursors with dodecanethiol in a 1-octadecene solvent. This one-pot noninjection strategy features easy handling, large-scale production, and high synthetic reproducibility. Following hyaluronic acid (HA) encapsulation, CuFeS2 nanocrystals coated with HA (CuFeS2@HA) not only readily dispersed in water and showed improved biocompatibility but also possessed a tumor-specific targeting ability of cancer cells bearing the cluster determinant 44 (CD44) receptors. The encapsulated CuFeS2@HA showed broad optical absorbance from the visible to the near-infrared (NIR) region and high photothermal conversion efficiencies of about 74.2%. They can, therefore, be utilized for the photothermal ablation of cancer cells with NIR light irradiation. In addition, toxicity studies in vitro (B16F1 and HeLa) and in vivo (zebrafish embryos), as well as in vitro blood compatibility studies, indicated that CuFeS2@HA show low cytotoxicity at the doses required for photothermal therapy. More importantly, CuFeS2@HA can be used as delivery vehicles for chemotherapy cisplatin(IV) prodrug forming CuFeS2@HA-Pt(IV). Their release profile revealed pH- and glutathione-mediated drug release from CuFeS2@HA-Pt(IV), which may minimize the side effects of the drug to normal tissues during therapy. Subsequent in vitro experiments confirmed that the use of CuFeS2@HA-Pt(IV) provides an enhanced and synergistic therapeutic effect compared to that from the use of either chemotherapy or photothermal therapy alone.
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50491
Appears in Collections:[生命科學暨生物科技學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML28View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback