English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2343557      Online Users : 35
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50435

Title: Quaternion Boundary Element Method for Coupled Exterior and Interior Magnetostatic Fields
Authors: Hong-Ki Hong
Yi-Chuan Kao
Jia-Wei Lee
Li-Wei Liu
Jeng-Tzong Chen
Contributors: 國立臺灣海洋大學:河海工程學系
Keywords: Magnetostatics
Quaternions
Algebra
Magnetic domains
Magnetic separation
Laplace equations
Integral equations
Date: 2018
Issue Date: 2018-10-08T05:56:01Z
Publisher: IEEE Transactions on Magnetics
Abstract: Abstract: In this paper, a quaternion boundary element method (BEM) is proposed to solve the magnetostatic problem. The present quaternion-valued BEM is developed by discretizing the quaternion-valued boundary integral equation (BIE). The quaternion-valued BIE can be seen as an extension of the generalized complex variable BIE in 3-D space. In other words, quaternion algebra is an extension of the complex variable in 3-D space. To derive quaternion-valued BIEs, the quaternion-valued Stokes' theorem is utilized. The quaternion-valued BIEs are noted for singularity, which exists in the sense of the Cauchy principal value (CPV). An analytical scheme is developed to evaluate the CPV by introducing a simple quaternion-valued harmonic function. For the domain points close to the boundary, some sorts of analogous, nearly singular, so-called “numericala boundary layer” phenomena appear and are remedied by using a similar analytic evaluation. The quaternion BEM features the oriented surface element, combining the unit outward normal vector with the ordinary surface element. It is noted that all derivations are done in quaternion algebra. In addition, quaternion algebra is more flexible than vector algebra in solving some 3-D problems from the point view of algebraic space. In deriving BIEs for exterior fields, the conditions at infinity for the quaternion-valued functions are carefully examined. Later, a magnetic sphere in a uniform magnetic field is considered. This problem is a magnetostatic problem of coupled exterior and interior magnetostatic fields. Finally, we apply the present approach to solve the magnetostatic problem. By comparing with exact solutions, the validity of the present approach is checked.
Relation: 54(6)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50435
Appears in Collections:[河海工程學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML32View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback