English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40649
Visitors : 616548      Online Users : 74
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50321

Title: A Dual-Voltage-Vector Model-Free Predictive Current Controller for Synchronous Reluctance Motor Drive Systems
Authors: Cheng-Kai Lin
Jen-Te Yu
Hao-Qun Huang
Jyun-Ting Wang
Hsing-Cheng Yu
Yen-Shin Lai
Contributors: 國立臺灣海洋大學:系統工程暨造船學系
Keywords: predictive current control
synchronous reluctance motor
voltage source inverter
Date: 2018-07
Issue Date: 2018-10-04T01:52:13Z
Publisher: Energies
Abstract: Abstract: For current control in power conversion and motor drive systems, there exist three classic methods in the literature and they are the hysteresis current control (HCC), the sine pulse-width modulation (SPWM), and the space vector pulse width modulation (SVPWM). HCC is easy to implement, but has relatively large current harmonic distortion as the disadvantage. On the other hand, the SPWM and SVPWM use modulation technique, commonly together with at least one proportional-integral (PI) regulator to reduce load current ripples, and hence demanding more computation time. This paper aims to improve the performance of a recently proposed new current control method—the single-voltage-vector model predictive current control (SVV-MPCC), for synchronous reluctance motor (SynRMs) drives. To that end, a dual-voltage-vector model-free predictive current control (DVV-MFPCC) for SynRMs is proposed. Unlike the SVV-MPCC that applies only a single voltage vector per sampling period, the proposed DVV-MFPCC is capable of providing two successive segmentary current predictions in the next sampling period through all possible combinations from any two candidate switching states increasing the number of applicable switching modes from seven to nineteen and reducing the prediction error effectively. Moreover, the new control does not utilize any parameters of the SynRM nor its mathematical model. The performance is effectively enhanced compared to that of SVV-MPCC. The working principle of the DVV-MFPCC will be detailed in this paper. Finally, the SVV-MPCC, the single-voltage-vector model-free predictive current control (SVV-MFPCC), the dual-voltage-vector model predictive current control (DVV-MPCC), and the DVV-MFPCC are realized to control the stator currents of SynRM through a 32-bit microcontroller TMS320F28377S. Experimental results are provided to validate the new method and verify that the DVV-MFPCC performs better than do the SVV-MPCC, the SVV-MFPCC, and the DVV-MPCC.
Relation: 11(7)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50321
Appears in Collections:[系統工程暨造船學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback