English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2325810      Online Users : 56
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50194

Title: Impacts of hydrogeological characteristics on groundwater-level changes induced by earthquakes
Authors: Ching-Yi Liu Yeeping Chia Po-Yu Chuang Yung-Chia Chiu Tai-Lin Tseng
Contributors: 國立臺灣海洋大學:應用地球科學研究所
Keywords: Groundwater level
Earthquake
Hydraulic conductivity
Numerical modeling
Taiwan
Date: 2018-03
Issue Date: 2018-09-20T03:16:39Z
Publisher: Hydrogeology Journal
Abstract: Abstract: Changes in groundwater level during earthquakes have been reported worldwide. In this study, field observations of co-seismic groundwater-level changes in wells under different aquifer conditions and sampling intervals due to near-field earthquake events in Taiwan are presented. Sustained changes, usually observed immediately after earthquakes, are found in the confined aquifer. Oscillatory changes due to the dynamic strain triggered by passing earthquake waves can only be recorded by a high-frequency data logger. While co-seismic changes recover rapidly in an unconfined aquifer, they can sustain for months or longer in a confined aquifer. Three monitoring wells with long-term groundwater-level data were examined to understand the association of co-seismic changes with local hydrogeological conditions. The finite element software ABAQUS is used to simulate the pore-pressure changes induced by the displacements due to fault rupture. The calculated co-seismic change in pore pressure is related to the compressibility of the formation. The recovery rate of the change is rapid in the unconfined aquifer due to the hydrostatic condition at the water table, but slow in the confined aquifer due to the less permeable confining layer. Fracturing of the confining layer during earthquakes may enhance the dissipation of pore pressure and induce the discharge of the confined aquifer. The study results indicated that aquifer characteristics play an important role in determining groundwater-level changes during and after earthquakes.
Relation: 26(2) pp.451–465
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50194
Appears in Collections:[應用地球科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML28View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback