English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28326/40319
Visitors : 4092894      Online Users : 88
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50189

Title: Centennial to millennial climate variability in the far northwestern Pacific (off Kamchatka) and its linkage to the East Asian monsoon and North Atlantic from the Last Glacial Maximum to the early Holocene
Authors: Sergey A. Gorbarenko
Xuefa Shi
Galina Yu. Malakhova
Aleksandr A. Bosin
Jianjun Zou
Yanguang Liu
Min-Te Chen
Contributors: 國立臺灣海洋大學:應用地球科學研究所
Date: 2017-08
Issue Date: 2018-09-20T01:55:26Z
Publisher: Climate of the Past
Abstract: Abstract: High-resolution reconstructions based on productivity proxies and magnetic properties of core LV63-41-2 (off Kamchatka) reveal prevailing centennial productivity/climate variability in the northwestern (NW) Pacific from the Last Glacial Maximum (LGM) to the early Holocene (EH). The age model of the core is established by AMS 14C dating and by projections of AMS 14C data of the nearby core SO-201-12KL through correlation of the productivity proxies and relative paleomagnetic intensity. The resulting sequence of centennial productivity increases/climate warming events in the NW Pacific occurred synchronously with the East Asian summer monsoon (EASM) sub-interstadials during the LGM (four events), Heinrich Event 1 (HE1) (four events), Bølling–Allerød (B/A) warming (four events), and over the EH (four events). Remarkable similarity of the sequence of the NW Pacific increased-productivity events with the EASM sub-interstadials over the LGM-HE1 implies that the Siberian High is a strong and common driver. The comparison with the δ18O record from Antarctica suggests that another mechanism associated with the temperature gradient in the Southern Hemisphere may also be responsible for the EASM/NW Pacific centennial events over the LGM-HE1. During the B/A warming and resumption of the Atlantic Meridional Overturning Circulation (AMOC), clear synchronicity between the NW Pacific, EASM and Greenland sub-interstadials was mainly controlled by changes in the atmospheric circulation. During the EH the linkages between solar forcing, ocean circulation, and climate changes likely control the synchronicity of abrupt climate changes in the NW Pacific and North Atlantic. The sequence of centennial events recorded in this study is a persistent regional feature during the LGM-EH, which may serve as a template in high-resolution paleoceanography and sediment stratigraphy in the NW Pacific.
Relation: 13 pp.1063–1080
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50189
Appears in Collections:[應用地球科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback