English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27228/39071
Visitors : 2410487      Online Users : 68
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50159

Title: Deriving Ocean Surface Drift Using Multiple SAR Sensors
Authors: Antony K. Liu
Ming-Kuang Hsu
Contributors: 國立臺灣海洋大學:海洋環境資訊系
Keywords: ocean surface drift
SAR
wavelet transform
feature tracking
ship wake
Date: 2009-07
Issue Date: 2018-09-17T08:13:25Z
Publisher: Remote Sensing
Abstract: Abstract: Tracking and monitoring ocean features which have short coherent time periods from sequential satellite images requires that the images have both very high spatial resolutions and short temporal sampling intervals (i.e., repeated cycles). Satellite images from a single sensor in a polar-orbiting satellite usually cannot meet these requirements since high spatial resolution of the sensor may result in relatively long temporal sampling interval and vice versa, such as the case of Synthetic Aperture Radar (SAR). This paper presents a new multi-sensor approach to overcome the long temporal sampling interval associated with a single SAR sensor while taking advantage of high spatial resolution of SAR images for the application of ocean feature tracking.Currently, there are two SAR sensors on different satellites, the European Remote Sensing Satellite-2 (ERS-2) and the ENVIronment SATellite (ENVISAT), having acquisition time offset around 28 minutes with almost exactly the same path.That is, ERS-2 is following ENVISAT with a 28-minutes delay, which is a good time-scale for ocean mesoscale feature tracking.A pair of SAR images from ERS-2 and ENVISAT collected on April 27, 2005 has been chosen to track ocean surface features by using wavelet analysis. As demonstrated in the case studies, this technique is robust and capable to derive ocean surface drift near an oil slick and around a big eddy in the South China Sea (SCS).
Relation: 1(3) pp.266-277
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/50159
Appears in Collections:[海洋環境資訊系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML4View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback