English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40649
Visitors : 645318      Online Users : 65
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/49788

Title: 64 X 64陣列式紅外線感測元件研發
Research and Development of Suspended Bridge 64 X 64 Infrared Detector Array
Authors: Chen, Yang-Jui
Contributors: NTOU:Department of Electrical Engineering
Keywords: 紅外線感測元件;熱敏阻
Infrared detector;Bolometer
Date: 2016
Issue Date: 2018-08-22T07:11:41Z
Abstract: 本論文利用微機電製程技術來製作微橋結構的紅外線感測元件,並利用光學諧振腔結構之目的來減少元件的熱傳導及增強對特定波長之紅外線吸收。在主要感測材料上,本論文透過改變钌氧化物與鋁氧化物的混合比例,來製作感測層靶材,並藉此以提高電阻溫度係數(temperature coefficient of resistance)簡稱TCR,在射頻磁控濺鍍系統中以12mtorr和120℃的條件下鍍膜可以達到近2.5的電阻溫度係數,此數據為本實驗目前最好的量測數據,在量出此數據之前試了幾種不同比例的靶材條件來鍍膜,以及調整腔體工作壓力觀察數據趨勢。為了確認本熱敏組材料提升電阻溫度係數後,材料本身雜訊增大,本論文設置簡易實驗,將鍍成薄膜的材料,放置定溫腔體持續取點紀錄,借由取樣的浮動大小來判斷雜訊是否再容忍範圍,而量測的方法是使用 Number of Power Line Cycles(NPLC)的原理,電源線週期的數量,表示訊號取樣的持續時間。使用整數倍的NPLC值可產生準確的量測,藉此消除極低頻及高頻的雜訊。 熱影像量測方面,本論文將製作完成的感測元件固定好,Bonding在PCB板上,放入真空腔體內,降低空氣的熱傳導,改變黑體溫度並且將不同形狀的遮罩放置黑體爐前方測試影像, 64x64陣列元件,將受黑體爐照射前後的訊號變化量轉換成電阻變化量,讀取並透過程式顯示在電腦上,完成熱影像之量測。
In this paper, the use of MEMS process technology to produce infrared sensing element micro-bridge structure, and to reduce the heat transfer element and enhance the absorption of specific wavelengths of infrared purpose of use of the optical resonator structure. On the main sensing materials, the paper by changing the mixing ratio of ruthenium oxide and aluminum oxide, to produce a sensing layer target, and thereby to increase the temperature coefficient of resistance referred to TCR, RF magnetic sputtering system to control the conditions under 12mtorr and 120 ℃ coating can reach nearly 2.5 temperature coefficient of resistance, this data-driven experiments currently the best measurement data, measure out the data before tried several different ratios of target coating material conditions, and adjust the working pressure of the cavity to observe trends in the data. To confirm that this group of materials after the thermal upgrading temperature coefficient of resistance, the material itself is increased noise, this paper set up a simple experiment, plated into a thin film materials, placed constant temperature chamber continued to take points record by the sampling size to float determine whether to noise tolerance range, and measurement method is to use NPLC principle, the number of power line cycles, indicates the signal sampling duration. Use an integer multiple of the value NPLC can produce accurate measurements, thereby eliminating very low frequency and high frequency noise. Aspects of thermal imaging measurement , the sensing element of the present paper will be produced in fixed , Bonding PCB board , placed in a vacuum chamber , reducing the thermal conductivity of air , and the blackbody temperature change differently shaped mask is placed in front of the blackbody furnace test image , 64x64 array will be subject to change in the signal before and after irradiation blackbody furnace into a resistance change amount , and read through the program displayed on the computer to complete the measurement of the thermal imaging .
URI: http://ethesys.lib.ntou.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=G0010353010.id
Appears in Collections:[電機工程學系] 博碩士論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback