English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27242/39085
Visitors : 2414544      Online Users : 75
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/48346

Title: 二氧化鈦與氧化鋅奈米流體熱電性能探討暨奈米熱電管之研製
Investigations on Thermoelectric Performances of Titanium Dioxide and Zinc Oxide for Development of Thermoeletric Pipe
Authors: Chen, Yen-Chun
陳彥均
Contributors: 國立臺灣海洋大學:輪機工程學系
Keywords: 奈米流體;電化學;氧化還原反應;因次分析
Nanofluid;Electrochemistry;Redox Reaction;Dimensional Analysis
Date: 2016
Issue Date: 2018-08-22T03:40:07Z
Abstract: 本研究主要分為二個部分,第一部份為利用二階合成法搭配超音波分散技術製備奈米流體,以調配1%~5%重量百分濃度二氧化鈦和氧化鋅奈米流體,檢測粒徑、酸鹼值、表面電位、熱傳導係數、黏度及吸光值六項性質,透過其性質數據探討奈米流體懸浮性、穩定性與熱傳導性能。在電化學部分,以銅與鋁做為電極,奈米流體做為電池槽之電解液,進行氧化還原反應實驗,測試1%~5%重量百分濃度下之二氧化鈦與氧化鋅的輸出電量,再透過因次分析推導奈米流體熱傳導係數與發電量的經驗公式;第二部分為結合熱管的熱傳導特性和電化學的原理製作奈米熱電管,其工作原理為高功率的機器元件產生熱能時,可將熱能傳導至奈米熱電管內,使熱能提高氧化還原反應速率,進而產生額外的電能,再將電能回饋應用於電子產品上。在不同壓力、填充量、電解液與溫度下透過實驗測試奈米熱電管的熱電性能,並利用因次分析方法推導奈米熱電管熱傳導係數與電量密度的經驗公式。 實驗結果顯示,在製備1~5%重量百分濃度的奈米流體熱電性能實驗中,調配二氧化鈦奈米流體以2%重量百分濃度較佳,調配氧化鋅奈米流體以1%重量百分濃度較佳,並透過文獻數據調配較佳濃度之氧化鋁奈米流體。本研究對氧化鋅、二氧化鈦、氧化鋁奈米流體進行熱電性能分析,整體以二氧化鈦奈米流體之性能較佳,在四週內能有良好的懸浮穩定性,熱傳導係數與電量密度隨著溫度升高有增加之趨勢,可透過經驗公式推算溫度在20℃~40℃之間且1~5%重量百分濃度二氧化鈦奈米流體之熱傳導係數與電量密度。在二氧化鈦奈米流體添加離子化合物實驗中,以添加0.2%重量百分濃度的氫氧化鈉較佳,可使奈米熱電管整體輸出電量大幅提升,且對二氧化鈦奈米流體之懸浮穩定性影響較小。在奈米熱電管熱電性能實驗中,量測奈米熱電管不同溫度與壓力下之輸出電量,並透過熱阻分析計算不同溫度與壓力下奈米熱電管之熱傳導係數,其結果顯示,隨著溫度升高和壓力降低輸出電量與熱傳導係數有增加之趨勢,在管內壓力400torr之下以管內溶液填充率80%之性能較佳,並可利用奈米熱電管添加二氧化鈦奈米流體之經驗公式,代入溫度與壓力參數,便能預估熱傳導係數與電量密度。
The research content has two parts. The first part of the second-order synthesis method for preparing nanofluid with ultrasonic dispersion technology. Preparation of 1 to 5% by weight percentage concentration of zinc oxide and titanium oxide nanofluids, Detecting nanofluid particle size, pH, surface potential, thermal conductivity, viscosity and absorbance. Detection of 1% to 5% by weight percent concentration of titanium dioxide and zinc oxide nano fluid output power. Calculate the nanofluid thermal conductivity and power generation empirical formula by Dimensional Analysis. The second part of the heat pipe heat transfer and electrochemical generation characteristics by making the thermoelectric pipe. The working principle of the machine-generated heat is conducted to the thermoelectric tube, so that the heat increase the oxidation-reduction reaction rate, thereby generating additional power in the load and feedback. Thermal energy to improve the oxidation-reduction reaction rate, and thus generate additional electricity to power the load and recovering. The method of dimensional analysis to derive the thermoelectric pipe thermal conductivity and power density empirical formula. The results show, Preparation of 1 to 5% by weight percentage concentration of nanofluids, Preparation of titanium oxide nanofluids are the preferred concentration of 2 percent by weight percent, Preparation of zinc oxide nanofluids are the preferred concentration of 1 percent by weight precent, and the preferred concentration of the prepared nano alumina fluid through the literature data. In this study, zinc oxide, titanium dioxide, aluminum oxide nanofluid thermoelectric performance test to the performance of the preferred titanium dioxide nanofluid. Titanium dioxide nanofluids have good suspension stability and thermoelectric properties. Titanium dioxide nano fluid thermal conductivity and power density empirical formula is applied at a temperature between 20 ℃ ~ 40 ℃ and 1 to 5% by weight percent concentration. Titanium dioxide nano fluids experiment ionic compound added to the fluid to add 0.2% by weight percent sodium hydroxide preferred. Through the addition of ionic compounds can significantly enhance the power generated by the thermoelectric pipe, and the suspension stability of titanium dioxide nanofluid of little effect. Improve the temperature and lowering the pressure will increase power and thermal conductivity by the thermoelectric pipe. Under pressure tube performance 400torr to 80% of the inner tube filling rate preferred solution. The use of thermoelectric properties of thermoelectric pipe empirical formula, substituting the temperature and pressure parameters, will be able to estimate the thermal conductivity and power density.
URI: http://ethesys.lib.ntou.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=G0010366005.id
http://ntour.ntou.edu.tw:8080/ir/handle/987654321/48346
Appears in Collections:[輪機工程學系] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML23View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback