English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27454/39300
Visitors : 2533642      Online Users : 31
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/48332

Title: 直立式風力發電機創新葉片設計與分析
Design and Analysis of Innovation Blade for
Authors: Chang, Tai-Lin
張台麟
Contributors: 國立臺灣海洋大學:輪機工程學系
Keywords: 風力發電機;葉片形體;田口法;ANSYS
VAWT;Blade Geometry;Taguchi Method;ANSYS
Date: 2015
Issue Date: 2018-08-22T03:39:59Z
Abstract: 本研究旨在設計一種創新的風機葉片形體,以改進阻力型直立式 風力發電機之效率。採用的主要方法以田口法的穩健設計方式進行, 並使用ANSYS-Fluent 模擬軟體加以實驗分析。 首先,針對葉片的迎風正面,依照因子設計法共列舉出四個控 制因子:(1)葉片形體上下兩側有包覆與否,(2)葉片形體正側平 面處凹入之深度,(3)葉片形體後側橢圓面之長半徑尺寸與(4)葉 片形體上下兩側的小翼高度。其中葉片形體上下兩側有包覆與否的 因子僅有兩個水準,而其餘的三個因子則有三種不同尺寸的三個水 準。然後,利用田口法之直交表,從五十四種組合中取得九個組合 以進行模擬。該九種組合於相同的參數下與每秒五米(5 m/s) 的風速 中,經由ANSYS-fluent 軟體進行模擬以取得每一種葉片形體之總受 力值。 然後依田口法中之望大特性,將九組模擬所得之的總受力值轉換 計算成信號雜訊比值(S/N Ratio)。再經由交叉分析該九組的信號雜 訊比值,可導衍出在每一個因子的最佳水準與最差水準。針對四個 因子的最佳水準組合而成的創新葉片形體再加以模擬與驗證。同時, 對創新葉片形體於後側橢圓面迎風在不同角度時亦加以模擬。這是 爲了驗證創新葉片形體是否會產生一些升力。 相較於其他之葉片形體,此一最佳化的創新葉片形體於前側平面 迎風時,將可受到較多的阻力,而於後側橢圓面迎風時,會生成些 許升力。此研究之測試方法將有助於改善直立式風力發電機葉片之 效率,並可供未來新型直立式風力發電機之設計參考。
This study aims to improve the efficiency of a drag-driven type of Vertical Axis Wind Turbine (VAWT) by designing an innovation blade geometry. The main methods adopted are Taguchi Methods of Robust Design for designing and ANSYS-Fluent simulation software for experimental analysis. Firstly, for the upwind front side of the blade, in accordance with factorial design method identified total four control factors:(1) the upper and lower sides of blade geometry with enclosure or not, (2) hollow depth on the flat surface of front side, (3) size of ellipse major radius to semi-oval surface at the back side, and (4) winglet height at upper and lower sides of blade geometry. The factor of body enclosure at the upper and lower sides of blade geometry has only two levels, while the other three factors will have three different sizes of three levels. Then, using Taguchi method of orthogonal arrays, getting nine out of fifty-four combinations for simulation. Those nine combinations are simulated for total forces on the blade by using ANSYS-Fluent software under the same parameters with wind speed of five meters per second (5 m/s). Then, in according to one of characteristics of Taguchi Methods, thelarger-the-better, derived total force value of nine simulations are calculated into the signal-to-noise (S/N) ratio. Through cross-analyze those nine sets of S/N ratio, the best level and the worst level of individual factor has derived. The innovation blade geometry, which is the combination of four factors with the best level, is simulated and verified. Meanwhile, the upwind semi-oval surface at back side of the innovation blade geometry in different angle are simulated as well. This is to verify that if the innovation blade geometry does create some lift force. Compare to blades with other geometry, this optimized innovative blade geometry not only captures more drag force on the upwind flat surface of front side, but also generates certain lift force on semi-oval surface at the back side. The test method of this study will help to improve the blade efficiency of a vertical wind turbine and can be a design references for the new vertical wind turbine .
URI: http://ethesys.lib.ntou.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=G0010266015.id
http://ntour.ntou.edu.tw:8080/ir/handle/987654321/48332
Appears in Collections:[輪機工程學系] 博碩士論文

Files in This Item:

There are no files associated with this item.



All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback