English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26987/38787
Visitors : 2283082      Online Users : 33
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/48306

Title: 3-D非金屬LED球泡燈結構體設計與熱性能分析
3-D Structure Design and Thermal Performance Analysis of Non-metallic LED Bulb
Authors: Yu,Fu-Hsiung
游富雄
Contributors: 國立臺灣海洋大學:輪機工程學系
Keywords: 發光二極體;複合材料;傅立葉;LED球泡燈;埋入金屬;暫態熱傳導
Light Emitting Diode;composite materials;Fourier;LED bulb;insert metal;transient heat conduction
Date: 2014
Issue Date: 2018-08-22T03:39:46Z
Abstract: 本文主要是在探討發光二極體(Light Emitting Diode, LED)球泡燈在自然對流下的散熱問題。以非金屬複合材料其價格便宜、好加工且質量輕等性質,取代傳統的燈具市場。第一部份為燈具材料之性能探討,以穩態熱傳導分析法,當實驗達到穩態條件時(約40分鐘),並藉由傅立葉逆運算方法,求解其熱傳導性能。之後,設計兩種型式的LED球泡燈結構體,首先針對有鰭片式球泡燈結構體,加以孔洞、隧道導流及埋入金屬(鋁)進行結構體散熱設計,改良球泡燈整體的溫度分佈,並增加鰭片平均之熱對流係數,讓LED球泡燈的熱能可經由散熱設計排出燈具結構體。其次在無鰭片式LED球泡燈結構體上,設計埋入不同幾何形狀的金屬,以提升燈具整體的熱傳導性能。同時搭配商業CFD軟體進行模擬分析,求得燈具結構體之熱性能分佈。除此之外,本文也對高熱傳導金屬材料進行暫態熱傳導實驗,在固定表面溫度的條件下,利用時間跟位置的關係,求得金屬熱傳性能,且搭配一維半無窮大之暫態熱傳導公式,運算得知其金屬材料之熱傳效應。並將計算結果與實驗和模擬結果相互比較,得知實驗結果之最大誤差為20 %,再藉由商業軟體進行暫態模組分析,將模擬設定中之Time step increment設為0.1秒,其模擬誤差結果約在0.5 %內。 而第二部份,主要探討LED球泡燈結構體之熱流分析,模擬結果顯示Rayleigh number為2.3598#westeur024#106屬於層流。在輸入功率約8.5 W時,有鰭片式LED球泡燈整體之最高溫度為99.77 °C,鰭片之熱對流係數為3.26 W/m2-k,但經由孔洞設計、隧道導流設計及鋁板金屬設計後,溫度依序降為90.72 °C、94.46 °C及78.99 °C。從溫度上的比較可以看出有鰭片式LED球泡燈,在埋入金屬中可下降最多溫度。以鰭片平均熱對流係數來分析,得知經由孔洞設計後鰭片平均熱對流係數會上升至4.74 W/m2-k,而隧道導流與埋入鋁板設計,鰭片平均熱對流係數依序為3.71 W/m2-k及4.07 W/m2-k。並在無鰭片式LED結構體的分析中,得知未埋入鋁板的溫度從99.81 °C降為82.13 °C,讓停留在燈具結構體上的熱能加以傳遞,促使燈具整體的溫度下降及延長球泡燈的使用壽命。
This article is to explore the light-emitting diodes (Light Emitting Diode, LED) bulb in the natural flow of heat issues. Non-metallic composite materials which are cheap and good processing properties such as light weight, to replace the traditional lighting market. The first part is to explore the performance of the lighting material to steady-state heat conduction analysis, when the experiment reaches steady state conditions (about 40 minutes), and by the inverse Fourier method for solving the thermal conduction properties. After that, the design of two types of LED bulb structure, the first targeted at fin bulb structure, to be holes, diversion tunnels and buried metal (aluminum) structural body thermal design, improved overall Bulb the temperature distribution, and the average increase of the heat convection coefficient fins allow heat LED bulb lighting structures can be discharged through the thermal design. Second, the non-fin type LED bulb structure, design of metal buried in different geometries to improve the overall thermal conductivity lamps. Simultaneously with the commercial CFD software simulation analysis, the thermal performance of the lamp structure to obtain the distribution. In addition, the paper also highly thermally conductive metallic material transient heat conduction experiments under conditions of a fixed surface temperature, using the relationship with the position of the time, and seek metallic heat transfer performance, and with a semi-infinite one-dimensional transient heat conduction of formula calculation that the heat transfer effect of its metallic material. Comparing the calculated results with the results of each experiment and simulation, the experimental results that the maximum error of 20%, then by commercial software modules for transient analysis of the analog setting Time step increment is set to 0.1 seconds, the analog error results in about 0.5%. The second part focuses on heat flow analysis LED bulb structure, the simulation results show that Rayleigh number is 2.3598 #westeur024# 106 belong to laminar flow. When the input power of about 8.5 W, fin-type LED bulb overall maximum temperature was 99.77 ° C, the heat sink of the convection coefficient is 3.26 W/m2-k, but through hole design, diversion tunnel design and aluminum after metal design, the temperature dropped sequentially 90.72 ° C, 94.46 ° C and 78.99 ° C. Comparison of temperature can be seen from there on fin-type LED bulb, buried metal can be reduced in up to temperature. The average coefficient of thermal convection in fin to analyze, through the holes in the design that the average heat convection coefficient of the fins rise to 4.74 W/m2-k, and diversion tunnel design with embedded aluminum fin heat convection coefficient average order to 3.71 W/m2-k and 4.07 W/m2-k. And the analysis of non-fin structure of LED, that is not embedded in the aluminum plate is reduced temperatures from 99.81 ° C 82.13 ° C, to allow the structure to stay on the lamp to transfer the thermal energy to promote the overall temperature decrease and the lamp extend the life of the bulb.
URI: http://ethesys.lib.ntou.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=G0010166018.id
http://ntour.ntou.edu.tw:8080/ir/handle/987654321/48306
Appears in Collections:[輪機工程學系] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML33View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback