English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26999/38800
Visitors : 2398554      Online Users : 63
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/48170

Title: Fracture properties of hydrided Zircaloy-4 cladding in recrystallization and stress-relief anneal conditions
Authors: Hsiao-Hung Hsu
Leu-Wen Tsay
Contributors: 國立臺灣海洋大學:光電與材料科技學系
Date: 2012-03
Issue Date: 2018-08-15T03:13:51Z
Publisher: Journal of Nuclear Materials
Abstract: Abstract: In this work, the stress-relieved (SRA) and recrystallized (RXA) Zircaloy-4 cladding specimens were hydrogen-charged to the target concentration of 300 wppm and then manufactured into X-specimens for fracture toughness test. The hydrogen embrittlement susceptibility of Zircaloy-4 cladding specimens in both SRA and RXA conditions were investigated. At the hydrogen concentration level of 300 wppm, J-integral values for RXA cladding were higher than those for SRA cladding at both 25 °C and 300 °C. The formation of brittle zirconium hydrides had a significant impact on the fracture toughness of Zircaloy-4 cladding in both SRA and RXA states, especially at 25 °C. Among all the tests, SRA cladding tested at 25 °C exhibited a great loss of the fracture toughness. The micrographic and fractographic observations further demonstrated that the fracture toughness of Zircaloy-4 cladding would be improved by the coarse grains in RXA cladding, but degraded by zirconium hydrides precipitated along the grain boundary.
Relation: 422(1-3) pp.116-123
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/48170
Appears in Collections:[光電科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback