English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27228/39071
Visitors : 2414206      Online Users : 60
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/48164

Title: Effect of microstructure on hydrogen embrittlement of various stainless steels
Authors: C.L. Lai
L.W.Tsay
C.Chen
Contributors: 國立臺灣海洋大學:光電與材料科技學系
Date: 2013-11
Issue Date: 2018-08-15T01:19:25Z
Publisher: Materials Science and Engineering A
Abstract: Abstract: This work investigated the effect of microstructure on the susceptibility of 304L (metastable), 310S (stable) austenitic and 410 martensitic stainless steels (SSs) to hydrogen embrittlement (HE). Slow-displacement-rate notched tensile tests were performed at various combinations of temperature (25 and 80 °C) and environment (air and H2) to evaluate the relative HE susceptibility of these alloys. At 25 °C, the untempered 410 SS was the specimen most susceptible to HE among the investigated specimens, whereas the 310S and tempered 410 specimens exhibited low HE susceptibility. The formation of strain-induced α′-martensite in a localized region in front of the notch tip was the main cause for the high HE susceptibility of the 304L SS tested at 25 °C. In general, the HE susceptibility was reduced to various degrees for specimens tested at 80 °C. A significantly lower susceptibility to HE was observed for the 304L specimen at 80 °C due to the suppressed formation of α′-martensite in the highly strained region.
Relation: 584(1) pp.14-20
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/48164
Appears in Collections:[光電科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML22View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback