English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40649
Visitors : 647121      Online Users : 41
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/48157

Title: The effect of post-weld heat treatment on the microstructure and notched tensile fracture of Ti–15V–3Cr–3Al–3Sn to Ti–6Al–4V dissimilar laser welds
Authors: C.T. Hsieh
R.K. Shiue
R.-T. Huang
L.W. Tsay
Contributors: 國立臺灣海洋大學:光電與材料科技學系
Date: 2016-01
Issue Date: 2018-08-14T08:18:10Z
Publisher: Materials Science & Engineering A
Abstract: Abstract: A CO2 laser was applied for dissimilar welding of Ti–15V–3Cr–3Al–3Sn (Ti–15–3) to Ti–6Al–4V (Ti–6–4) alloys. The microstructures and notched tensile strength (NTS) of the dissimilar welds were investigated in the as-welded and post-weld heat treatment (PWHT) conditions, and the results were compared with Ti–6–4 and Ti–15–3 homogeneous laser welds with the same PWHT. The results indicated that predominant α″ with a few α and β phases was formed in the as-welded fusion zone (FZ). Furthermore, the FZ hardness was susceptible to the PWHT and showed a plateau for the specimens aged in the temperature range from 426 to 482 °C/4 h. In comparison with the homogeneous Ti–15–3 weld under the same PWHT conditions, the dilution of Ti–15–3 with Ti–6–4 caused a slight increase in the Al equivalent (AlEQ) of the FZ, resulting in a further rise in FZ hardness. With the PWHT at/below 538 °C, the dissimilar welds were associated with low NTS or high notch brittleness.
Relation: 653 pp.139-146
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/48157
Appears in Collections:[光電科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback