National Taiwan Ocean University Institutional Repository:Item 987654321/48149
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40652
Visitors : 754494      Online Users : 46
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item:

Title: Thermoelectric Properties of Alumina-Doped Bi0.4Sb1.6Te3 Nanocomposites Prepared through Mechanical Alloying and Vacuum Hot Pressing
Authors: Chung-Kwei Lin
May-Show Chen
Rong-Tan Huang
Yu-Chun Cheng
Pee-Yew Lee
Contributors: 國立臺灣海洋大學:光電與材料科技學系
Date: 2015-11
Issue Date: 2018-08-14T05:42:29Z
Publisher: Energies
Abstract: Abstract: In this study, γ-Al2O3 particles were dispersed in p-type Bi0.4Sb1.6Te3 through mechanical alloying to form γ-Al2O3/Bi0.4Sb1.6Te3 composite powders. The composite powders were consolidated using vacuum hot pressing to produce nano- and microstructured composites. Thermoelectric (TE) measurements indicated that adding an optimal amount of γ-Al2O3 nanoparticles improves the TE performance of the fabricated composites. High TE performances with figure of merit (ZT) values as high as 1.22 and 1.21 were achieved at 373 and 398 K for samples containing 1 and 3 wt % γ-Al2O3 nanoparticles, respectively. These ZT values are higher than those of monolithic Bi0.4Sb1.6Te3 samples. The ZT values of the fabricated samples at 298-423 K are 1.0-1.22; these ZT characteristics make γ-Al2O3/Bi0.4Sb1.6Te3 composites suitable for power generation applications because no other material with a similarly high ZT value has been reported at this temperature range. The achieved high ZT value may be attributable to the unique nano- and microstructures in which γ-Al2O3 nanoparticles are dispersed among the grain boundary or in the matrix grain, as revealed by high-resolution transmission electron microscopy. The dispersed γ-Al2O3 nanoparticles thus increase phonon scattering sites and reduce thermal conductivity. The results indicated that the nano- and microstructured γ-Al2O3/Bi0.4Sb1.6Te3 alloy can serve as a high-performance material for application in TE devices.
Relation: 8(11) pp.12573-12583
Appears in Collections:[Institute of Optoelectronic Sciences] Periodical Articles

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback