English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28607/40644
Visitors : 5257492      Online Users : 485
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/47517

Title: Low Pressure Radio-Frequency Oxygen Plasma Induced Oxidation of Titanium – Surface Characteristics and Biological Effects
Authors: Li-Deh Lin
Wan-Yu Tseng
Sheng-Hao Hsu
Chieh-Hsiun Huang
Yu-Chieh Tu
Shao-Chin Tseng
Hsuen-Li Chen
Min-Huey Chen
Wei-Fang Su
Contributors: 國立臺灣海洋大學:光電科學研究所
Date: 2013-12
Issue Date: 2018-07-31T03:48:55Z
Publisher: PLOS ONE
Abstract: Abstract: Objective:This research was designed to investigate the effects of low pressure radio-frequency (RF) oxygen plasma treatment (OPT) on the surface of commercially pure titanium (CP-Ti) and Ti6Al4V. Surface topography, elemental composition, water contact angle, cell viability, and cell morphology were surveyed to evaluate the biocompatibility of titanium samples with different lengths of OP treating time.
Materials and Methods:CP-Ti and Ti6Al4V discs were both classified into 4 groups: untreated, treated with OP generated by using oxygen (99.98%) for 5, 10, and 30 min, respectively. After OPT on CP-Ti and Ti6Al4V samples, scanning probe microscopy, X-ray photoelectron spectrometry (XPS), and contact angle tests were conducted to determine the surface topography, elemental composition and hydrophilicity, respectively. The change of surface morphology was further studied using sputtered titanium on silicon wafers. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and F-actin immunofluorescence stain were performed to investigate the viability and spreading behavior of cultivated MG-63 cells on the samples.
Results:The surface roughness was most prominent after 5 min OPT in both CP-Ti and Ti6Al4V, and the surface morphology of sputtered Ti sharpened after the 5 min treatment. From the XPS results, the intensity of Ti°, Ti2+, and Ti3+ of the samples’ surface decreased indicating the oxidation of titanium after OPT. The water contact angles of both CP-Ti and Ti6Al4V were increased after 5 min OPT. The results of MTT assay demonstrated MG-63 cells proliferated best on the 5 min OP treated titanium sample. The F-actin immunofluorescence stain revealed the cultivated cell number of 5 min treated CP-Ti/Ti6Al4V was greater than other groups and most of the cultivated cells were spindle-shaped.
Conclusions:Low pressure RF oxygen plasma modified both the composition and the morphology of titanium samples’ surface. The CP-Ti/Ti6Al4V treated with 5 min OPT displayed the roughest surface, sharpest surface profile and best biocompatibility.
Relation: 8(12)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/47517
Appears in Collections:[光電科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML24View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback