English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2315230      Online Users : 33
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/47243

Title: Shape Effects of Iron Nanowires on Hyperthermia Treatment
Authors: Yuh-Jing Chiou
Wei-Syuan Lin
Hong-Ming Lin
Hsiang-Hsin Chen
Yeu-Kuang Hwu
Contributors: 國立臺灣海洋大學:光電科學研究所
Date: 2013-05
Issue Date: 2018-07-09T01:39:59Z
Publisher: Journal of Nanomaterials
Abstract: Abstract: This research discusses the influence of morphology of nanomagnetic materials (one-dimensional iron nanowires and zero-dimensional iron nanoparticles) on heating efficiency of the hyperthermia treatment. One-dimensional iron nanowires, synthesized by reducing method in external magnetic field, are explored in terms of their material properties, magnetic anisotropy, and cytotoxicity of EMT-6 cells. The magnetic anisotropy of an array of nanowires is examined in parallel and perpendicular magnetic fields by VSM. For the magnetic hyperthermia treatment tests, iron nanowires and nanoparticles with different concentrations are heated in alternating magnetic field to measure their actual heating efficiency and SLP heating properties. The shape effects of iron nanomaterials can be revealed from their heating properties. The cytotoxicity of nanowires with different concentrations is measured by its survival rate in EMT-6 with the cells cultivated for 6 and 24 hours.
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/47243
Appears in Collections:[光電科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML16View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback