English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2342534      Online Users : 33
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/47212

Title: High-resolution and large-volume tomography reconstruction for x-ray microscopy
Authors: Yu-Tai Ching
Chang-Chieh Cheng
Yeukuang Hwu
Contributors: 國立臺灣海洋大學:光電科學研究所
Date: 2016-03
Issue Date: 2018-07-05T02:16:21Z
Publisher: SPIEGEL DER LETTEREN
Abstract: Abstract: This paper presents a method of X-ray image acquisition for the high-resolution tomography reconstruction that uses a light source of synchrotron radiation to reconstruct a three-dimensional tomographic volume dataset for a nanoscale object. For large objects, because of the limited field-of-view, a projection image of an object should to be taken by several shots from different locations, and using an image stitching method to combine these image blocks together. In this study, the overlap of image blocks should be small because our light source is the synchrotron radiation and the X-ray dosage should be minimized as possible. We use the properties of synchrotron radiation to enable the image stitching and alignment success when the overlaps between adjacent image blocks are small. In this study, the size of overlaps can reach to 15% of the size of each image block. During the reconstruction, the mechanical stability should be considered because it leads the misalignment problem in tomography. We adopt the feature-based alignment
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/47212
Appears in Collections:[光電科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML13View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback