English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28588/40619
Visitors : 4116726      Online Users : 70
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/47203

Title: The transverse field dependence of the planar Hall effect sensitivity in Permalloy films.
Authors: W. L. Chen
S. U. Jen
J. Y. Lee
Y. D. Yao
Contributors: 國立臺灣海洋大學:光電科學研究所
Date: 2001-12
Issue Date: 2018-07-05
Publisher: J. Appl. Phys
Abstract: Abstract: A series of Permalloy films, of various shapes such as a square, a rectangle, a circle, and a rhombus, was made. The sample length to width ratio L/w varied from 1 (i.e., square) to 29 (i.e., rectangle). We studied how the planar Hall effect (PHE) signal was affected by adding a transverse field Hy along the easy-axis direction of the sample. It was found that in a certain range of Hy, the PHE sensitivity S might become inoperative, i.e., S changed linearly as a function of Hy from −Smax to +Smax (or vice versa), where Smax was the maximum sensitivity. This phenomenon is explained by considering the Zeeman-energy and the single-domain-rotation effects. In particular, for the square sample, the following data exist: (1) Smax is as high as 310 Ω/T at the film thickness t=500 Å, and (2) the inoperative range for Hy is the narrowest among all the samples. From this study, we conclude that the field of the Earth He—as long as its horizontal component is larger than 0.25 Oe—can be employed to stabilize the magnetic structure of a Permalloy element and to achieve the best PHE performance with Smax.
Relation: 90(12)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/47203
Appears in Collections:[光電科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback