National Taiwan Ocean University Institutional Repository:Item 987654321/47171
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 27228/39071
造访人次 : 2412304      在线人数 : 70
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 进阶搜寻

jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/47171

题名: Three-dimensional simulation and analysis of heat transfer and flow field in micro-floating zone of LHPG with asymmetrical perturbation
作者: C. Y. Lo
P. Y. Chen
E. P. Huang
贡献者: 國立臺灣海洋大學:光電科學研究所
日期: 2012-12
上传时间: 2018-07-04T02:49:53Z
出版者: Journal of Crystal Growth
摘要: Abstract: Under symmetrical conditions, the micro-floating zone of a laser-heated pedestal growth (LHPG) system displays a symmetrical double eddy flow field distribution. However, as the perturbation increases, the double eddy flow field distribution changes from symmetry to tilt, resulting in unstable flow field vibration. This study investigated the influence of the molten zone on the shape (at vapor–liquid and solid–liquid interfaces) and flow field distribution resulting from tilting the CO2 laser heating ring and the gravity field. This tilt is caused by spatial perturbations resulting from mounting the source rod and seed on pedestals with an alignment that slightly deviates from the growth axis of the LHPG system. The feasibility of growing crystal fibers using the micro-floating zone of the LHPG in the horizontal plane was further investigated. After selecting YAG as the growth material, we evaluated various reduction ratios, source rod scales, surface tensions, and thermocapillary coefficients for the two types of perturbation. Deviation in the laser heating ring significantly influenced the solid–liquid interface and the symmetry of the flow field in the molten zone. However, as long as the laser heating ring remained close to symmetrical, the influence on the molten zone of the larger deviation in the gravity field was limited. Therefore, growing crystal fibers using the micro-floating zone of the LHPG system in the horizontal plane is possible for materials that possess the correct physical properties at appropriate source rod scales. The three-dimensional simulation of this asymmetry includes the effects of the diameter reduction ratio and laser heating, and also modifies Lan's thermocapillary floating numerical model. The modified model calculates the physical grid through a non-orthogonal body-fitting grid transformation using the control-volume finite-difference method. To enhance the simulation and represent the physical system more accurately, we compared the shape of the molten zone of the simulation and the experiment. In practice, spatial perturbations can be controlled to within a range of approximately 3°. Using a 500-μm-diameter source rod and a 0.5 diameter reduction ratio as the baseline, we compared the flow field distribution in the molten zone with a 300-μm-diameter source rod and a 0.5 diameter reduction ratio as well as with a 500-μm-diameter source rod and a 0.25 diameter reduction ratio. Finally, a LHPG system undergoing horizontal growth was also simulated for a 1000-μm-diameter source rod and a gravity field perpendicular to the direction of crystal growth for further analysis.
關聯: 360(1) pp.111–118
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/47171
显示于类别:[光電科學研究所] 期刊論文

文件中的档案:

档案 描述 大小格式浏览次数
index.html0KbHTML10检视/开启


在NTOUR中所有的数据项都受到原著作权保护.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈