English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2350688      Online Users : 35
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/47120

Title: Broad expansion of optical frequency combs by self-Raman scattering in coupled-cavity self-mode-locked monolithic lasers
Authors: Y. F. Chen
M. T, Chang
T. L. Huang
H. C. Liang
K. W. Su
Contributors: 國立臺灣海洋大學:光電科學研究所
Date: 2017-04
Issue Date: 2018-07-03T03:06:02Z
Publisher: OPTICS EXPRESS
Abstract: Abstract: Broad expansion of optical frequency comb (OFC) by the self-Raman scattering is numerically analyzed and experimentally accomplished in a coupled-cavity self-mode-locked (SML) monolithic Yb:KGW laser. The gain medium is coated to achieve the monolithic SML operation and a partially reflective mirror is further exploited to form the coupled cavity and to multiply the repetition rate up to 128.9 GHz. With a coupled reflectivity of 95%, it is experimentally found that not only the first-order but also second-order stimulated Raman scattering (SRS) can be efficiently generated. The mode-locked OFC can be consequently expanded to reach approximately 8.4 THz, leading the pulse width to be as narrow as 53 fs. At the pump power of 8.7 W, the total output power for the fundamental and the first- and second-Stokes waves can be maintained at 1.6 W. The present exploration provides a promising way to generate the ultrahigh-repetition-rate broadband OFC via the simultaneous SML and SRS processes.
Relation: 25(7) pp.7627-7636
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/47120
Appears in Collections:[光電科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML13View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback