English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2312501      Online Users : 29
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/46582

Title: Transition in A 2D Lid-Driven Cavity Flow
Authors: Yih-FerngPeng;Yuo-HsienShiau;Robert R.Hwang
Contributors: 國立臺灣海洋大學:系統工程暨造船學系
Keywords: Transition;Cavity flow;Direct numerical simulation
Date: 2003
Issue Date: 2018-05-24T06:48:03Z
Publisher: Computers & Fluids
Abstract: Abstract:Direct numerical simulations about the transition process from laminar to chaotic flow in square lid-driven cavity flows are considered in this paper. The chaotic flow regime is reached after a sequence of successive supercritical Hopf bifurcations to periodic, quasi-periodic, inverse period-doubling, period-doubling, and chaotic self-sustained flow regimes. The numerical experiments are conducted by solving the 2-D incompressible Navier–Stokes equations with increasing Reynolds numbers (Re). The spatial discretization consists of a seventh-order upwind-biased method for the convection term and a sixth-order central method for the diffusive term. The numerical experiments reveal that the first Hopf bifurcation takes place at Re equal to 7402±4%, and a consequent periodic flow with the frequency equal to 0.59 is obtained. As Re is increased to 10,300, a new fundamental frequency (FF) is added to the velocity spectrum and a quasi-periodic flow regime is reached. For slightly higher Re (10,325), the new FF disappears and the flow returns to a periodic regime. Furthermore, the flow experiences an inverse period doubling at 10,325 <Re< 10,700 and a period-doubling regime at 10,600 <Re< 10,900. Eventually, for flows with Re greater than 11,000, a scenario for the onset of chaotic flow is obtained. The transition processes are illustrated by increasing Re using time–velocity histories, Fourier power spectra, and the phase–space trajectories. In view of the conducted grid independent study, the values of the critical Re presented above are estimated to be accurate within ±4%
Relation: 32(3) pp.337-352
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/46582
Appears in Collections:[系統工程暨造船學系] 期刊論文

Files in This Item:

There are no files associated with this item.



All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback