English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40652
Visitors : 770752      Online Users : 63
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/46292

Title: Antihypertensive properties of tilapia (Oreochromis spp.) frame and skin enzymatic protein hydrolysates
Authors: Hsin-Chieh Lin
Adeola M. Alashi
Rotimi E. Aluko
Bonnie Sun Pan
Yu-Wei Chang
Contributors: 國立臺灣海洋大學:海洋生物研究所
Keywords: frame protein hydrolysate
Tilapia
skin protein hydrolysate
angiotensin I-converting enzyme
renin
spontaneously hypertensive rats
Date: 2017
Issue Date: 2018-05-14T07:27:08Z
Publisher: Food & Nutrition Research
Abstract: Abstract: Proteins from tilapia frame and skin can potentially be precursors of antihypertensive peptides according to the result of BIOPEP analyses. The aim was to generate peptides with inhibitory effects against angiotensin-converting enzyme (ACE) and renin from tilapia frame and skin protein isolates (FPI and SPI). The most active hydrolysate was then tested for blood pressure-lowering ability in spontaneously hypertensive rats (SHRs). Tilapia frame and skin protein hydrolysates (FPHs and SPHs) were respectively produced from FPI and SPI hydrolysis using pepsin, papain, or bromelain. The ACE-inhibitory activities of tilapia protein hydrolysates with varying degree of hydrolysis (DH) were evaluated. In order to enhance the activity, the hydrolysate was fractionated into four fractions (<1 kDa, 1–3 kDa, 3–5 kDa, and 5–10 kDa) and the one with the greatest ability to inhibit in vitro ACE and renin activities was subjected to oral administration (100 mg/kg body weight) to SHRs. Systolic and diastolic blood pressure (SBP and DBP), mean arterial pressure (MAP), and heart rates (HR) were subsequently measured within 24 h. The pepsin-hydrolyzed FPH (FPHPe) with the highest DH (23%) possessed the strongest ACE-inhibitory activity (IC50: 0.57 mg/mL). Its <1 kDa ultrafiltration fraction (FPHPe1) suppressed both ACE (IC50: 0.41 mg/mL) and renin activities more effectively than larger peptides. In addition, FPHPe1 significantly (p < 0.05) reduced SBP (maximum −33 mmHg), DBP (maximum −24 mmHg), MAP (maximum −28 mmHg), and HR (maximum −58 beats) in SHRs. FPHPe1 showed both in vitro and in vivo antihypertensive effects, which suggest tilapia processing coproducts may be valuable protein raw materials for producing antihypertensive peptides.
Relation: 61(1)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/46292
Appears in Collections:[海洋生物研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML89View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback