English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27287/39131
Visitors : 2442427      Online Users : 32
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/46217

Title: Metamorphosis in Balanomorphan, Pedunculated, and Parasitic Barnacles: A Video-Based Analysis
Authors: Jens T. Høeg;Diego Maruzzo;Keiju Okano;Henrik Glenner;Benny K.K. Chan
Contributors: 國立臺灣海洋大學:海洋生物研究所
Date: 2012
Issue Date: 2018-05-09T03:01:42Z
Publisher: Integrative and Comparative Biology
Abstract: Abstract: Cypris metamorphosis was followed using video microscopy in four species of cirripeds representing the suspension-feeding pedunculated and sessile Thoracica and the parasitic Rhizocephala. Cirripede metamorphosis involves one or more highly complex molts that mark the change from a free cypris larva to an attached suspension feeder (Thoracica) or an endoparasite (Rhizocephala). The cyprids and juveniles are so different in morphology that they are functionally incompatible. The drastic reorganization of the body implicated in the process can therefore only commence after the cyprid has irreversibly cemented itself to a substratum. In both Megabalanus rosa and Lepas, the settled cyprid first passes through a quiescent period of tissue reorganization, in which the body is raised into a position vertical to the substratum. In Lepas, this is followed by extension of the peduncle. In both Lepas and M. rosa, the juvenile must free itself from the cypris cuticle by an active process before it can extend the cirri for suspension feeding. In M. rosa, the juvenile performs intensely pulsating movements that result in shedding of the cypris carapace ∼8 h after settlement. Lepas sp. sheds the cypris cuticle ∼2 days after settlement due to contractile movements of the peduncle. In Lepas anserifera, the juvenile actively breaks through the cypris carapace, which can thereafter remain for several days without impeding cirral feeding. Formation of the shell plates begins after 1-2 days under the cyprid carapace in Lepas. In M. rosa, the free juvenile retains its very thin cuticle and flexible shape for some time, and shell plates do not appear until sometime after shedding of the cypris cuticles. In Sacculina carcini, the cypris settles at the base of a seta on the host crab and remains quiescent and aligned at an angle of ∼60° to the crab’s cuticle. The metamorphosis involves two molts, resulting in the formation of an elongated kentrogon stage with a hollow injection stylet. Due to the orientation of the cyprid, the stylet points directly towards the base of the crab’s seta. Approximately 60 h after settlement the stylet penetrates down one of the cyprid antennules and into the crab. Almost immediately afterwards the unsegmented vermigon stage, preformed in the kentrogon, passes down through the hollow stylet and into the crab’s hemocoel in a process lasting only 30 s. In S. carcini, the carapace can remain around the metamorphosing individual without impeding the process.
Relation: 52(3) pp.337-347
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/46217
Appears in Collections:[海洋生物研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML26View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback