National Taiwan Ocean University Institutional Repository:Item 987654321/46196
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 28611/40652
造访人次 : 756573      在线人数 : 58
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 进阶搜寻


题名: Data association in multi-target tracking: a solution using a layered Boltzmann machine
作者: Ronald A. Iltis
Pei-Yih Ting
贡献者: 國立臺灣海洋大學:資訊工程學系
NTOU:Department of Computer Science and Engineering
关键词: Neurons;Digital audio players;Target tracking;Concurrent computing;Electric variables measurement;Frequency;Fasteners;Information processing;Hopfield neural networks;Aerospace control
日期: 1991-07
上传时间: 2018-05-07T07:46:56Z
出版者: Neural Networks, 1991., IJCNN-91-Seattle International Joint Conference on
摘要: Abstract:
Data association is the problem of determining the origin of measurements in a multitarget tracking algorithm, and assigning probabilities beta /sub i//sup t/ to the event that the i-th measurement originated from the t-th target. A parallel computational method is presented for solving the data association problem using a layered Boltzmann machine. The association probabilities can be computed with arbitrarily small errors if a sufficient number of layers of binary neurons are available. Specifically, the probability beta /sub i//sup j/ is shown to be equal to the relative frequency of activation of neuron v(i,j) in a layered two-dimensional network. The authors present some simple tracking examples comparing the performance of the Boltzmann algorithm to the exact data association solution, and with the performance of an alternative parallel method using the Hopfield neural network.
關聯: pp. I31-I36
显示于类别:[資訊工程學系] 演講及研討會


档案 描述 大小格式浏览次数



著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈