English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26994/38795
Visitors : 2390460      Online Users : 149
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/46159

Title: Phylogenetic relationships of Darwin’s “Mr. Arthrobalanus”: The burrowing barnacles (Cirripedia: Acrothoracica)
Authors: Hsiu-Chin,Lin
Gregory A.Kobasov
Benny K.K.Chan
Contributors: 國立臺灣海洋大學:海洋生物研究所
Keywords: Habitat
Acrothoracica
Burrowing barnacles
Ancestral state construction
Date: 2016
Issue Date: 2018-05-07T03:04:28Z
Publisher: Molecular Phylogenetics and Evolution
Abstract: Abstract: The barnacles of the superorder Acrothoracica are small, burrowing, epibiotic, and dioecious (large female with dwarf male) crustaceans largely found in the carbonate sediments and skeletons of marine invertebrates. The acrothoracicans represent the Cirripedia with the most plesiomorphic characters and have prominently featured in phylogenetic speculations concerning these crustaceans. Traditionally, Acrothoracica was divided into two main orders, Pygophora and Apygophora. The Apygophora had uniramus cirri and no anus. The Pygophora had biramus terminal cirri and an anus and was further divided into two families, Lithoglyptidae and Cryptophialidae. Kolbasov (2009) revised the superorder Acrothoracica on the basis of morphological examinations of females, dwarf males, and cyprids and rearranged the acrothoracican species into two new orders, Lithoglyptida and Cryptophialida. The present study is the first attempt to reconstruct the phylogenetic relationships of acrothoracican barnacles by sequencing two mitochondrial (cytochrome C oxidase I and 16S ribosomal DNA) and two nuclear (18S ribosomal DNA and histone H3) markers of 8 of the 11 genera comprising 23 acrothoracican species. All monophylies of the eight acrothoracican genera sampled in this study were strongly supported. The deep interfamilial relationship constructed is consistent with the recent morphological phylogenetic relationship proposed by Kolbasov, Newman, and Høeg (Kolbasov, 2009) that Cryptophialidae (order Cryptophialida) is the sister group to all other acrothoracicans (order Lithoglyptida). According to an ancestral character state reconstruction analysis, the posterior lobes of females; armament of opercular bars, attachment stalk, lateral projections of the body, and aperture slits in dwarf males; and habitat use appear to have phylogenetic importance.
Relation: 100 pp.290-302
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/46159
Appears in Collections:[海洋生物研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML19View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback