English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2352773      Online Users : 40
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/46141

Title: Hybrid photonic-plasmonic crystal nanocavity sensors
Authors: Pi-Ju Cheng;Chih-Kai Chiang;Bo-Tsun Chou;Zhen-Ting Huang;Yun-Cheng Ku;Mao-Kuen Kuo;Jin-Chen Hsu
Contributors: 國立臺灣海洋大學:機械與機電工程學系
Date: 2018
Issue Date: 2018-05-03T08:14:38Z
Publisher: Applied Physics A
Abstract: Abstract:We have investigated a hybrid photonic–plasmonic crystal nanocavity consisting of a silicon grating nanowire adjacent to a metal surface with a gain gap between them. The hybrid plasmonic cavity modes are highly confined in the gap due to the strong coupling of the photonic crystal cavity modes and the surface plasmonic gap modes. Using finite-element method (FEM), guided modes of the hybrid plasmonic waveguide (WG) were numerically determined at a wavelength of 1550 nm. The modal characteristics such as WG confinement factors and modal losses of the fundamental hybrid plasmonic modes were obtained as a function of groove depth at various gap heights. Furthermore, the band structure of the hybrid crystal modes corresponding to a wide band gap of 17.8 THz is revealed. To enclose the optical energy effectively, a single defect was introduced into the hybrid crystal. At a deep subwavelength defect length as small as 270 nm, the resonant mode exhibits a high quality factor of 567 and an ultrasmall mode volume of 1.9 × 10− 3 (λ/neff)3 at the resonance wavelength of 1550 nm. Compared to conventional photonic crystal nanowire cavities in the absence of a metal surface, the factor Q/Vm is significantly enhanced by about 15 times. The designed hybrid photonic–plasmonic cavity sensors exhibit distinguished characteristics such as sensitivity of 443 nm/RIU and figure of merit of 129. The proposed nanocavities open new possibilities for various applications with strong light–matter interaction, such as biosensors and nanolasers.
Relation: 124
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/46141
Appears in Collections:[機械與機電工程學系] 期刊論文

Files in This Item:

There are no files associated with this item.



All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback