English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2324709      Online Users : 58
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45965

Title: Penaeus monodon thioredoxin restores the DNA binding activity of oxidized white spot syndrome virus IE1
Authors: Jiun-Yan Huang;Wang-Jing Liu;Han-Ching Wang;Der-Yen Lee;Jiann-Horng Leu;Hao-Ching Wang;Mong-Hsun Tsai;Shih-Ting Kang;I-Tung Chen;Guang-Hsiung Kou;Geen-Dong Chang;Chu-Fang Lo
Contributors: 國立臺灣海洋大學:海洋生物研究所
Date: 2012
Issue Date: 2018-04-18T05:41:33Z
Publisher: Antioxidants & Redox Signaling
Abstract: Abstract: Aims: In this study we identified viral gene targets of the important redox regulator thioredoxin (Trx), and explored in depth how Trx interacts with the immediate early gene #1 (IE1) of the white spot syndrome virus (WSSV). Results: In a pull-down assay, we found that recombinant Trx bound to IE1 under oxidizing conditions, and a coimmunoprecipitation assay showed that Trx bound to WSSV IE1 when the transfected cells were subjected to oxidative stress. A pull-down assay with Trx mutants showed that no IE1 binding occurred when cysteine 62 was replaced by serine. Electrophoretic mobility shift assay (EMSA) showed that the DNA binding activity of WSSV IE1 was downregulated under oxidative conditions, and that Penaeus monodon Trx (PmTrx) restored the DNA binding activity of the inactivated, oxidized WSSV IE1. Another EMSA experiment showed that IE1's Cys-X-X-Cys motif and cysteine residue 55 were necessary for DNA binding. Measurement of the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) in WSSV-infected shrimp showed that oxidative stress was significantly increased at 48 h postinfection. The biological significance of Trx was also demonstrated in a double-strand RNA Trx knockdown experiment where suppression of shrimp Trx led to significant decreases in mortality and viral copy numbers. Innovation and Conclusion: WSSV's pathogenicity is enhanced by the virus' use of host Trx to rescue the DNA binding activity of WSSV IE1 under oxidizing conditions. Antioxid. Redox Signal. 17, 914–926.
Relation: 17(6)
URI: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/45965
Appears in Collections:[海洋生物研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML25View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback